## An extensional perspective on higher categorical models of linear logic

Elies Harington Samuel Mimram

École Polytechnique

July 19 2025

TLLA workshop



### $\infty$ -categories

- adjunctions
- (co)limits
- kan extensions
- (symmetric) monoidal structures, (co)monoids

We often drop the prefix " $\infty$ " for brevity.



### $\infty$ -categorical semantics of linear logic

### Definition ([Ben95])

A linear-non-linear adjunction is an adjunction

$$(\mathcal{M},\times) \xrightarrow{\stackrel{L}{\longleftarrow}} (\mathcal{L},\otimes)$$

between a cartesian category  $\mathcal M$  and a symmetric monoidal closed category  $\mathcal L$ , where the left adjoint  $L:\mathcal M\to\mathcal L$  is strongly monoidal  $L(X\times Y)\simeq LX\otimes LY$ .

The functor  $LM: \mathcal{L} \to \mathcal{L}$  models the exponential of linear logic.

### Example (Lafont exponential)

If  $(\mathcal{L}, \otimes, \multimap)$  admits cofree cocommutative comonoids, there is a linear-non-linear adjunction

$$(\mathsf{Comon}(\mathcal{L}), \times) \xrightarrow{\perp} (\mathcal{L}, \otimes).$$

### Intensional and extensional perspectives

Intensional Extensional 
$$\{x^2+4x+1\mid x\in\mathbb{Z}\} \qquad \{x\in\mathbb{N}\mid x+3 \text{ is a perfect square}\}$$
 Matrix  $(a_{ij})\in M_{m,n}(k)$  Linear map  $k^m\to k^n$ 

#### Categorically:

| category  | <i>k</i> -Mat               | k-Vect                                       |
|-----------|-----------------------------|----------------------------------------------|
| objects   | natural numbers $m, n$      | finite-dimensional $k$ -vector spaces $E, F$ |
| morphisms | matrices $M \in M_{m,n}(k)$ | linear maps $E	o F$                          |

The functor  $m \mapsto k^m : k\text{-Mat} \to k\text{-Vect}$  is an equivalence of categories.



| dimension            | 0-categories (= posets)                             | ∞-categories                                                  |
|----------------------|-----------------------------------------------------|---------------------------------------------------------------|
| intensional category | Porel                                               | $\infty$ Prof                                                 |
| objects              | posets                                              | $\infty$ -categories                                          |
| morphisms            | posetal relations $E 	imes F^{\mathrm{op}} 	o Bool$ | profunctors $\mathcal{C} 	imes \mathcal{D}^op 	o \mathcal{S}$ |
| extensional category | SupLat                                              | $\infty Cat_cc$                                               |
| objects              | (co)complete lattices                               | cocomplete $\infty$ -categories                               |
| morphisms            | arbitrary join preserving maps                      | cocontinuous functors                                         |
| free exponential     | multisets Mul                                       | free symmetric monoidal ∞-category Sym                        |
| non-linear maps      | "boolean polynomials"                               | generalized $\infty$ -species                                 |
| Scott exponential    | finite join completion                              | finite colimit/coproduct cocompletion                         |
| non-linear maps      | Scott-continuous maps                               | filtered/sifted colimit preserving functors                   |

| dimension            | 0-categories (= posets)                             | ∞-categories                                                  |
|----------------------|-----------------------------------------------------|---------------------------------------------------------------|
| intensional category | Porel                                               | $\infty$ Prof                                                 |
| objects              | posets                                              | $\infty$ -categories                                          |
| morphisms            | posetal relations $E 	imes F^{\mathrm{op}} 	o Bool$ | profunctors $\mathcal{C} 	imes \mathcal{D}^op 	o \mathcal{S}$ |
| extensional category | SupLat                                              | $\inftyCat_cc$                                                |
| objects              | (co)complete lattices                               | cocomplete $\infty$ -categories                               |
| morphisms            | arbitrary join preserving maps                      | cocontinuous functors                                         |
| free exponential     | multisets Mul                                       | free symmetric monoidal ∞-category Sym                        |
| non-linear maps      | "boolean polynomials"                               | generalized $\infty$ -species                                 |
| Scott exponential    | finite join completion                              | finite colimit/coproduct cocompletion                         |
| non-linear maps      | Scott-continuous maps                               | filtered/sifted colimit preserving functors                   |

| dimension            | 0-categories (= posets)                    | ∞-categories                                                  |
|----------------------|--------------------------------------------|---------------------------------------------------------------|
| intensional category | Porel                                      | $\infty$ Prof                                                 |
| objects              | posets                                     | $\infty$ -categories                                          |
| morphisms            | posetal relations $E 	imes F^{op} 	o Bool$ | profunctors $\mathcal{C} 	imes \mathcal{D}^op 	o \mathcal{S}$ |
| extensional category | SupLat                                     | $\infty Cat_cc$                                               |
| objects              | (co)complete lattices                      | cocomplete $\infty$ -categories                               |
| morphisms            | arbitrary join preserving maps             | cocontinuous functors                                         |
| free exponential     | multisets Mul                              | free symmetric monoidal ∞-category Sym                        |
| non-linear maps      | "boolean polynomials"                      | generalized $\infty$ -species                                 |
| Scott exponential    | finite join completion                     | finite colimit/coproduct cocompletion                         |
| non-linear maps      | Scott-continuous maps                      | filtered/sifted colimit preserving functors                   |

## The category of posets and posetal relations

#### Definition

The category Porel of posets and posetal relations has

- objects: posets
- morphisms: relations  $R \subseteq X \times Y$  such that  $\forall x, x', y, y'$ ,

$$x' \ge x R y \ge y' \implies x' R y'$$

- or equivalently,  $R: X \times Y^{op} \to Bool$
- cartesian product: disjoint union of underlying posets  $X \sqcup Y$
- tensor product: cartesian product of underlying posets  $X \otimes Y$



## The category of suplattices

#### Definition

The category SupLat of suplattices has

- objects: complete lattices  $(E, \leq)$
- morphisms: monotonous maps  $f: E \rightarrow F$  that **preserve all joins**
- cartesian products: cartesian product of underlying posets
- a tensor product such that

$$\mathsf{Hom}_{\mathsf{SupLat}}(E \otimes F, G) \simeq \mathsf{Bilin}(E \times F, G)$$

where  $f: E \times F \to F$  is in Bilin $(E \times F, G)$  if and only if it preserves joins separately in both variables.



## The extensional perspective on posetal relations

Every poset X defines a suplattice P(X) of **downards-closed subsets of** X called the **powerset** of X.

Every posetal relation  $R \subset X \times Y$  induces a suplattice morphism

$$P(X) \to P(Y)$$

$$U \subseteq X \mapsto \{y \in Y \mid \exists x \in U, x R y\}$$

### Proposition

The induced functor P(-): Porel  $\to$  SupLat is fully faithful. In other words, the full subcategory of SupLat on powerset lattices is equivalent to Porel.



| dimension            | 0-categories (= posets)                    | $\infty$ -categories                                          |
|----------------------|--------------------------------------------|---------------------------------------------------------------|
| intensional category | Porel                                      | $\infty$ Prof                                                 |
| objects              | posets                                     | $\infty$ -categories                                          |
| morphisms            | posetal relations $E 	imes F^{op} 	o Bool$ | profunctors $\mathcal{C} 	imes \mathcal{D}^op 	o \mathcal{S}$ |
| extensional category | SupLat                                     | $\infty Cat_cc$                                               |
| objects              | (co)complete lattices                      | cocomplete $\infty$ -categories                               |
| morphisms            | arbitrary join preserving maps             | cocontinuous functors                                         |
| free exponential     | multisets Mul                              | free symmetric monoidal ∞-category Sym                        |
| non-linear maps      | "boolean polynomials"                      | generalized ∞-species                                         |
| Scott exponential    | finite join completion                     | finite colimit/coproduct cocompletion                         |
| non-linear maps      | Scott-continuous maps                      | filtered/sifted colimit preserving functors                   |

| dimension            | 0-categories (= posets)                    | ∞-categories                                                  |
|----------------------|--------------------------------------------|---------------------------------------------------------------|
| intensional category | Porel                                      | $\infty$ Prof                                                 |
| objects              | posets                                     | $\infty$ -categories                                          |
| morphisms            | posetal relations $E 	imes F^{op} 	o Bool$ | profunctors $\mathcal{C} 	imes \mathcal{D}^op 	o \mathcal{S}$ |
| extensional category | SupLat                                     | $\infty Cat_cc$                                               |
| objects              | (co)complete lattices                      | cocomplete $\infty$ -categories                               |
| morphisms            | arbitrary join preserving maps             | cocontinuous functors                                         |
| free exponential     | multisets Mul                              | free symmetric monoidal $\infty$ -category Sym                |
| non-linear maps      | "boolean polynomials"                      | generalized $\infty$ -species                                 |
| Scott exponential    | finite join completion                     | finite colimit/coproduct cocompletion                         |
| non-linear maps      | Scott-continuous maps                      | filtered/sifted colimit preserving functors                   |

## The multiset exponential on relations and suplattices

The multiset functor Mul : Poset  $\rightarrow$  Poset lifts to an exponential comonad Mul : Porel  $\rightarrow$  Porel.

#### Proposition

Given a poset X, Mul(X) is the cofree cocommutative comonoid on X in Porel.

### Proposition

SupLat admits cofree cocommutative comonoids, and  $P: \mathsf{Porel} \to \mathsf{SupLat}$  preserves them.

Hence SupLat extends Porel as a model of linear logic.

## The Scott exponential on SupLat and Porel

#### Definition

Scott the category of posets with joins of **directed families** and monotonous maps that preserve directed joins.

There is a chain of symmetric monoidal left adjoints

$$\mathsf{Set} \xrightarrow{\bot} \mathsf{Poset} \xrightarrow{\bot} \mathsf{Scott} \xrightarrow{\bot} \mathsf{SupLat}$$

where the monoidal structures on Set, Poset and Scott are cartesian.

 $\rightsquigarrow$  3 exponential comonads on SupLat that restrict to Porel as follows:  $!_{Set}, !_{Poset}$  and  $!_{Scott}$ .

- $!_{Set}(E) = P(|E|)$  the powerset on the underlying set of E.
- $!_{Poset}(E) = P(E)$  the completion of E under arbitrary joins.
- $!_{Scott}(E)$  = the completion of E under finite joins.



| dimension            | 0-categories (= posets)                    | $\infty$ -categories                                          |
|----------------------|--------------------------------------------|---------------------------------------------------------------|
| intensional category | Porel                                      | ∞Prof                                                         |
| objects              | posets                                     | $\infty$ -categories                                          |
| morphisms            | posetal relations $E 	imes F^{op} 	o Bool$ | profunctors $\mathcal{C} 	imes \mathcal{D}^op 	o \mathcal{S}$ |
| extensional category | SupLat                                     | $\infty Cat_cc$                                               |
| objects              | (co)complete lattices                      | cocomplete $\infty$ -categories                               |
| morphisms            | arbitrary join preserving maps             | cocontinuous functors                                         |
| free exponential     | multisets Mul                              | free symmetric monoidal $\infty$ -category Sym                |
| non-linear maps      | "boolean polynomials"                      | generalized $\infty$ -species                                 |
| Scott exponential    | finite join completion                     | finite colimit/coproduct cocompletion                         |
| non-linear maps      | Scott-continuous maps                      | filtered/sifted colimit preserving functors                   |

| dimension            | 0-categories (= posets)                    | $\infty$ -categories                                          |
|----------------------|--------------------------------------------|---------------------------------------------------------------|
| intensional category | Porel                                      | $\infty$ Prof                                                 |
| objects              | posets                                     | $\infty$ -categories                                          |
| morphisms            | posetal relations $E 	imes F^{op} 	o Bool$ | profunctors $\mathcal{C} 	imes \mathcal{D}^op 	o \mathcal{S}$ |
| extensional category | SupLat                                     | $\infty Cat_cc$                                               |
| objects              | (co)complete lattices                      | cocomplete $\infty$ -categories                               |
| morphisms            | arbitrary join preserving maps             | cocontinuous functors                                         |
| free exponential     | multisets Mul                              | free symmetric monoidal $\infty$ -category Sym                |
| non-linear maps      | "boolean polynomials"                      | generalized $\infty$ -species                                 |
| Scott exponential    | finite join completion                     | finite colimit/coproduct cocompletion                         |
| non-linear maps      | Scott-continuous maps                      | filtered/sifted colimit preserving functors                   |

| dimension            | 0-categories (= posets)                    | $\infty$ -categories                                          |
|----------------------|--------------------------------------------|---------------------------------------------------------------|
| intensional category | Porel                                      | ∞Prof                                                         |
| objects              | posets                                     | $\infty$ -categories                                          |
| morphisms            | posetal relations $E 	imes F^{op} 	o Bool$ | profunctors $\mathcal{C} 	imes \mathcal{D}^op 	o \mathcal{S}$ |
| extensional category | SupLat                                     | $\infty Cat_cc$                                               |
| objects              | (co)complete lattices                      | cocomplete $\infty$ -categories                               |
| morphisms            | arbitrary join preserving maps             | cocontinuous functors                                         |
| free exponential     | multisets Mul                              | free symmetric monoidal $\infty$ -category Sym                |
| non-linear maps      | "boolean polynomials"                      | generalized $\infty$ -species                                 |
| Scott exponential    | finite join completion                     | finite colimit/coproduct cocompletion                         |
| non-linear maps      | Scott-continuous maps                      | filtered/sifted colimit preserving functors                   |

## Categorifying relations

Going from 0-categories (posets) to  $\infty$ -categories :

posetal relations  $\leadsto \infty$ -profunctors

#### Definition

Let  $C, \mathcal{D}$  be  $\infty$ -categories.

A profunctor  $F: \mathcal{C} \to \mathcal{D}$  is a functor  $F: \mathcal{C} \times \mathcal{D}^{op} \to \mathcal{S}$ .

Not clear how to define an  $\infty$ -category of  $\infty$ -categories and profunctors: composition is usually defined using coends, and associativity is shown by hand using coend computations. **Getting higher coherences seems impossible using this approach.** 

## The extensional perspective on profunctors

$$\frac{ \begin{array}{c} \mathcal{C} \times \mathcal{D}^{op} \to \mathcal{S} \\ \hline \mathcal{C} \to \mathsf{Fun}(\mathcal{D}^{op}, \mathcal{S}) \\ \hline \\ \hline \mathcal{C} \to \mathcal{P}(\mathcal{D}) \\ \hline \\ \mathcal{P}(\mathcal{C}) \to_{\mathsf{cc}} \mathcal{P}(\mathcal{D}) \end{array}}_{\mathsf{(kan extension along Yoneda)}}$$

Hence profunctors correspond to cocontinuous functors between presheaf  $\infty$ -categories.

#### Definition

Write  $\infty \mathsf{Cat}_\mathsf{cc}$  for the  $\infty$ -category of  $\infty$ -categories with small colimits and functors that preserve them (called *cocontinuous functors*).

Write  $\infty$ Prof for its full subcategory on the presheaf  $\infty$ -categories.



| dimension            | 0-categories (= posets)                    | $\infty$ -categories                                          |
|----------------------|--------------------------------------------|---------------------------------------------------------------|
| intensional category | Porel                                      | $\infty$ Prof                                                 |
| objects              | posets                                     | $\infty$ -categories                                          |
| morphisms            | posetal relations $E 	imes F^{op} 	o Bool$ | profunctors $\mathcal{C} 	imes \mathcal{D}^op 	o \mathcal{S}$ |
| extensional category | SupLat                                     | $\infty Cat_cc$                                               |
| objects              | (co)complete lattices                      | cocomplete $\infty$ -categories                               |
| morphisms            | arbitrary join preserving maps             | cocontinuous functors                                         |
| free exponential     | multisets Mul                              | free symmetric monoidal $\infty$ -category Sym                |
| non-linear maps      | "boolean polynomials"                      | generalized $\infty$ -species                                 |
| Scott exponential    | finite join completion                     | finite colimit/coproduct cocompletion                         |
| non-linear maps      | Scott-continuous maps                      | filtered/sifted colimit preserving functors                   |

| dimension            | 0-categories (= posets)                    | $\infty$ -categories                                          |
|----------------------|--------------------------------------------|---------------------------------------------------------------|
| intensional category | Porel                                      | $\infty$ Prof                                                 |
| objects              | posets                                     | $\infty$ -categories                                          |
| morphisms            | posetal relations $E 	imes F^{op} 	o Bool$ | profunctors $\mathcal{C} 	imes \mathcal{D}^op 	o \mathcal{S}$ |
| extensional category | SupLat                                     | $\infty Cat_cc$                                               |
| objects              | (co)complete lattices                      | cocomplete $\infty$ -categories                               |
| morphisms            | arbitrary join preserving maps             | cocontinuous functors                                         |
| free exponential     | multisets Mul                              | free symmetric monoidal $\infty$ -category Sym                |
| non-linear maps      | "boolean polynomials"                      | generalized $\infty$ -species                                 |
| Scott exponential    | finite join completion                     | finite colimit/coproduct cocompletion                         |
| non-linear maps      | Scott-continuous maps                      | filtered/sifted colimit preserving functors                   |

## Monoidal structures on $\infty$ -categories of $\infty$ -categories

#### Definition

Given a class  $\mathbb K$  of diagrams, write  $\infty\mathsf{Cat}_\mathbb K$  for the subcategory of  $\infty\mathsf{Cat}$  on  $\infty$ -categories that admit colimits indexed by diagrams in  $\mathbb K$  and functors that preserve those colimits.

- ullet symmetric monoidal closed structure on  $\infty\mathsf{Cat}_\mathbb{K}$
- ullet monoidal left adjoints to forgetting of colimits when  $\mathbb{K}\subset\mathbb{K}'$

$$(\infty\mathsf{Cat}_{\mathbb{K}},\otimes) \xrightarrow{\bot} (\infty\mathsf{Cat}_{\mathbb{K}'},\otimes)$$

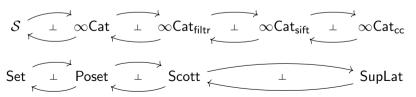


## Cocompletion-based exponentials

### Example

- $\infty \mathsf{Cat}_\emptyset = \infty \mathsf{Cat}$
- ullet  $\infty$ Cat<sub>cc</sub> for  $\mathbb{K}$  = all (small) diagrams ("cc" for cocontinuous)
- Cat<sub>filtr</sub> for *filtered* diagrams
- ullet  $\infty$ Cat<sub>sift</sub> for *sifted* diagrams

"Filtered" and "sifted" diagrams are different categorical generalizations of directed posets.



# Cocompletion-based exponentials (2)

$$\infty$$
Cat<sub>filtr</sub>  $\perp$   $\infty$ Cat<sub>cc</sub>  $\infty$ Cat<sub>cc</sub>  $\perp$   $\infty$ Cat<sub>cc</sub>  $\perp$  SupLat

$$!_{filtr}X = cocompletion under finite colimits$$

 $!_{sift}X = cocompletion under finite coproducts$ 

$$!_{\mathsf{Scott}}X = \mathsf{cocompletion} \ \mathsf{under} \ \mathsf{finite} \ \mathsf{joins}$$

What about the free exponential?

## Free exponential on Prof

### Theorem ([Lur17])

Let  $(\mathcal{C}, \otimes)$  with countable colimits. If  $X \otimes -: \mathcal{C} \to \mathcal{C}$  preserves small colimits,  $\mathcal{C}$  admits free commutative monoids, given by

$$A\mapsto\coprod_{n\in\mathbb{N}}A^{\otimes n}/\!/\mathfrak{S}_n$$

This applies to  $\infty Cat_{cc}$ !

#### Theorem

$$\mathcal{C}\mapsto\coprod_{n\in\mathbb{N}}\mathcal{C}^{\otimes n}/\!/\mathfrak{S}_n$$

is the free commutative monoid on C in  $\infty Cat_{cc}$ .



## Free exponential on Prof (2)

 $\mathcal{P}: \infty \mathsf{Prof} \to \infty \mathsf{Cat}_\mathsf{cc}$  preserves free commutative monoids.

$$\coprod_{n\in\mathbb{N}}\mathcal{P}(\mathcal{C})^{\otimes n}/\!/\mathfrak{S}_n \quad \simeq \quad \mathcal{P}(\mathsf{Sym}(\mathcal{C}))$$

 $\rightarrow$   $\infty$ Prof admits free commutative monoids.

 $\infty$ Prof is self-dual by  $\mathcal{C}\mapsto\mathcal{C}^{\mathsf{op}}$ , so it has cofree cocommutative comonoids

$$\mathcal{C}\mapsto (\mathsf{Sym}(\mathcal{C}^\mathsf{op}))^\mathsf{op}\simeq \mathsf{Sym}(\mathcal{C})$$

### Non-linear maps are generalized species

Non-linear maps:

$$\mathsf{Sym}(\mathcal{C}) \times \mathcal{D}^\mathsf{op} \to \mathcal{S}$$

"generalized ∞-species of structure" [Fio+08]

In 1-categories,  $F: \mathsf{Sym}(\mathcal{C}) \times \mathcal{D}^{\mathsf{op}} \to \mathsf{Set}$  corresponds to **analytic functor** [Fio13]

$$\mathcal{P}(\mathcal{C}) o \mathcal{P}(\mathcal{D})$$



### Bonus: recovering spans from profunctors

Given groupoids X, Y, a 1-profunctor  $X \rightarrow Y$  is a functor  $X \times Y \rightarrow Set$ , which corresponds to a discrete fibration  $Z \rightarrow X \times Y$ .

 $X,Y \infty$ -groupoids.  $\infty$ -profunctor  $X \to Y = \text{functor } X \times Y \to \mathcal{S}$ , which corresponds to an arbitrary functor  $Z \to X \times Y$ , or in other words a span

$$X \longleftarrow Z \longrightarrow Y$$

 $\infty$ -profunctors between  $\infty$ -groupoids correspond exactly to spans of  $\infty$ -groupoids.  $\rightarrow \infty$ -categorical span model of linear logic (earlier span models include [Mel19; CF23])



#### Conclusion

- The extensionnal approach to relations tends itself very well to formal generalizations in higher-categorical settings.
- Leveraging the existing theory of cocompletions in  $\infty$ -categories, we found  $\infty$ -categorical analogues to the Scott exponential of linear logic.
- Using the theory of free monoids in ∞-categories, we also built the free exponential on profunctors.
- This way we defined an  $\infty$ -category of generalized species.
- While defining the usual bicategory of species involves heavy coend computations, in  $\infty$ -categories we had to work more abstractly using the extensional perspective: computational behavior can only be recovered afterward.

| dimension            | 0-categories (= posets)                    | $\infty$ -categories                                          |
|----------------------|--------------------------------------------|---------------------------------------------------------------|
| intensional category | Porel                                      | $\infty$ Prof                                                 |
| objects              | posets                                     | $\infty$ -categories                                          |
| morphisms            | posetal relations $E 	imes F^{op} 	o Bool$ | profunctors $\mathcal{C} 	imes \mathcal{D}^op 	o \mathcal{S}$ |
| extensional category | SupLat                                     | $\infty Cat_cc$                                               |
| objects              | (co)complete lattices                      | cocomplete $\infty$ -categories                               |
| morphisms            | arbitrary join preserving maps             | cocontinuous functors                                         |
| free exponential     | multisets Mul                              | free symmetric monoidal $\infty$ -category Sym                |
| non-linear maps      | "boolean polynomials"                      | generalized ∞-species                                         |
| Scott exponential    | finite join completion                     | finite colimit/coproduct cocompletion                         |
| non-linear maps      | Scott-continuous maps                      | filtered/sifted colimit preserving functors                   |

#### References

- [Ben95] P. N. Benton. "A mixed linear and non-linear logic: Proofs, terms and models". in Computer Science Logic: byeditorLeszek Pacholski and Jerzy Tiuryn. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, pages 121–135. ISBN: 978-3-540-49404-1.
- [CF23] Pierre Clairambault and Simon Forest. *The Cartesian Closed Bicategory of Thin Spans of Groupoids*. 27 january 2023. DOI: 10.48550/arXiv.2301.11860.
- [Fio+08] M. Fiore andothers. "The cartesian closed bicategory of generalised species of structures". in Journal of the London Mathematical Society: 77.1 (february 2008), pages 203-220. ISSN: 00246107. DOI: 10.1112/jlms/jdm096. (urlseen 29/06/2023).
- [Fio13] Marcelo Fiore. Analytic functors between presheaf categories over groupoids. 20 june 2013. DOI: 10.48550/arXiv.1303.5638.
- [Lur17] Jacob Lurie. Higher Algebra. 18 september 2017. URL: https://people.math.harvard.edu/~lurie/papers/HA.pdf (urlseen 07/09/2023).
- [Mel19] Paul-Andre Mellies. "Template games and differential linear logic". in 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS): Vancouver, BC, Canada: IEEE, june 2019, pages 1–13.

  DOI: 10.1109/LICS.2019.8785830.