

Higher-categorical models of linear logic

PhD defense

Elies Harington
January 26, 2026
École Polytechnique

Table of Contents

Mathematical logic

A homotopy-theoretical model of linear logic

∞ -categorical models

Logic is the study of formal statements, their proofs and their meaning.

Logic is the study of **formal statements**, their proofs and their meaning.

Syntax

$(A$ and $B)$ implies C

$(A \wedge B) \implies C$

Logic is the study of formal statements, **their proofs** and their meaning.

Syntax	Proof theory
$(A \text{ and } B) \text{ implies } C$	$\frac{A \vdash A \text{ (ax)} \quad B \vdash B \text{ (ax)}}{A, B \vdash A \wedge B \text{ (\wedge-R)}}$
$(A \wedge B) \Rightarrow C$	

Logic is the study of formal statements, their proofs and **their meaning**.

Syntax	Proof theory	Semantics
$(A \text{ and } B) \text{ implies } C$ $(A \wedge B) \Rightarrow C$	$\frac{A \vdash A \text{ (ax)} \quad B \vdash B \text{ (ax)}}{A, B \vdash A \wedge B \text{ (\wedge-R)}}$	if A is true and B is true, then $(A \wedge B)$ is true

Traditional semantics

In traditional semantics: interpret the logic using an ordered set.

Definition

A **model** of traditional logic is:

- an ordered set $(\text{TruthValues}, \leq)$
- for every formula A , a **truth value** $\llbracket A \rrbracket \in \text{TruthValues}$
- such that whenever $A \vdash B$, then $\llbracket A \rrbracket \leq \llbracket B \rrbracket$

Traditional semantics

In traditional semantics: interpret the logic using an ordered set.

Definition

A **model** of traditional logic is:

- an ordered set $(\text{TruthValues}, \leq)$
- for every formula A , a **truth value** $\llbracket A \rrbracket \in \text{TruthValues}$
- such that whenever $A \vdash B$, then $\llbracket A \rrbracket \leq \llbracket B \rrbracket$

Example

We can take $\text{TruthValues} = \{\text{False}, \text{True}\}$, with $\text{False} < \text{True}$.

Traditional semantics — interpreting formulas

Example

We can take $\text{TruthValues} = \{\text{False}, \text{True}\}$, with $\text{False} < \text{True}$.

$\llbracket A \rrbracket$	$\llbracket B \rrbracket$	$\llbracket A \wedge B \rrbracket$
False	False	False
False	True	False
True	False	False
True	True	True

$\llbracket A \rrbracket$	$\llbracket B \rrbracket$	$\llbracket A \implies B \rrbracket$
False	False	True
False	True	True
True	False	False
True	True	True

Traditional semantics — interpreting proofs

Example

We can take $\text{TruthValues} = \{\text{False}, \text{True}\}$, with $\text{False} < \text{True}$.

Example

The cut rule

$$\frac{A \vdash B \quad B \vdash C}{A \vdash C} \text{ (cut)}$$

Traditional semantics — interpreting proofs

Example

We can take $\text{TruthValues} = \{\text{False}, \text{True}\}$, with $\text{False} < \text{True}$.

Example

The cut rule

$$\frac{A \vdash B \quad B \vdash C}{A \vdash C} \text{ (cut)}$$

is interpreted in the model by the fact that if both

$$[\![A]\!] \leq [\![B]\!] \text{ and } [\![B]\!] \leq [\![C]\!]$$

then

$$[\![A]\!] \leq [\![C]\!]$$

Categorical semantics — interpreting formulas

In categorical semantics, we replace the ordered set `TruthValues` by a category, for instance sets.

Example

Now $\llbracket A \rrbracket$ is no longer `True` or `False`, but an arbitrary set.

$$\llbracket A \rrbracket = \bullet \bullet \bullet$$

$$\llbracket B \rrbracket = \bullet \bullet \bullet \bullet$$

Categorical semantics — interpreting formulas

In categorical semantics, we replace the ordered set `TruthValues` by a category, for instance sets.

Example

Now $\llbracket A \rrbracket$ is no longer True or False, but an arbitrary set.

$$\llbracket A \vee B \rrbracket = \llbracket A \rrbracket \sqcup \llbracket B \rrbracket = \bullet \bullet \bullet \quad \bullet \bullet \bullet$$

$$\llbracket A \rrbracket = \bullet \bullet \bullet$$

$$\llbracket B \rrbracket = \bullet \bullet \bullet \bullet$$

Categorical semantics — interpreting formulas

In categorical semantics, we replace the ordered set `TruthValues` by a category, for instance sets.

Example

Now $\llbracket A \rrbracket$ is no longer `True` or `False`, but an arbitrary set.

$$\llbracket A \rrbracket = \bullet \bullet \bullet$$

$$\llbracket B \rrbracket = \bullet \bullet \bullet \bullet$$

$$\begin{aligned}\llbracket A \vee B \rrbracket &= \llbracket A \rrbracket \sqcup \llbracket B \rrbracket = \bullet \bullet \bullet \quad \bullet \bullet \bullet \\ \llbracket A \wedge B \rrbracket &= \llbracket A \rrbracket \times \llbracket B \rrbracket = \left. \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \end{array} \right\} A \\ &\quad \left. \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \end{array} \right\} B\end{aligned}$$

Categorical semantics — interpreting formulas

In categorical semantics, we replace the ordered set `TruthValues` by a category, for instance sets.

Example

Now $\llbracket A \rrbracket$ is no longer `True` or `False`, but an arbitrary set.

$$\llbracket A \rrbracket = \bullet \bullet \bullet$$
$$\llbracket B \rrbracket = \bullet \bullet \bullet \bullet$$

$$\llbracket A \vee B \rrbracket = \llbracket A \rrbracket \sqcup \llbracket B \rrbracket = \bullet \bullet \bullet \quad \bullet \bullet \bullet$$
$$\llbracket A \wedge B \rrbracket = \llbracket A \rrbracket \times \llbracket B \rrbracket = \left. \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \end{array} \right\} A$$
$$\llbracket A \implies B \rrbracket = \llbracket B \rrbracket^{\llbracket A \rrbracket} = \{f : \llbracket A \rrbracket \rightarrow \llbracket B \rrbracket\}$$

Categorical semantics — interpreting formulas

In categorical semantics, we replace the ordered set `TruthValues` by a category, for instance sets.

Example

Now $\llbracket A \rrbracket$ is no longer `True` or `False`, but an arbitrary set.

$$\llbracket A \rrbracket = \bullet \bullet \bullet$$

$$\llbracket B \rrbracket = \bullet \bullet \bullet \bullet$$

$$\begin{aligned}\llbracket A \vee B \rrbracket &= \llbracket A \rrbracket \sqcup \llbracket B \rrbracket = \bullet \bullet \bullet \quad \bullet \bullet \bullet \\ \llbracket A \wedge B \rrbracket &= \llbracket A \rrbracket \times \llbracket B \rrbracket = \left. \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \end{array} \right\} A \\ \llbracket A \implies B \rrbracket &= \llbracket B \rrbracket^{\llbracket A \rrbracket} = \{f : \llbracket A \rrbracket \rightarrow \llbracket B \rrbracket\}\end{aligned}$$

If $\llbracket A \rrbracket = \emptyset$, then $\llbracket A \wedge B \rrbracket = \emptyset$.

Categorical semantics — interpreting proofs

$$\frac{p \\ \vdots \\ A \vdash B}{\rightsquigarrow \llbracket p \rrbracket : \llbracket A \rrbracket \rightarrow \llbracket B \rrbracket}$$

Categorical semantics — interpreting proofs

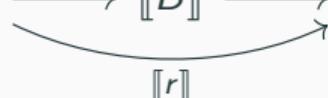
$$\frac{\begin{array}{c} p \\ \vdots \\ A \vdash B \end{array}}{\rightsquigarrow \llbracket p \rrbracket : \llbracket A \rrbracket \rightarrow \llbracket B \rrbracket}$$

$$r \left\{ \frac{\begin{array}{c} p \\ \vdots \\ A \vdash B \end{array}}{A \vdash B} \quad \frac{\begin{array}{c} q \\ \vdots \\ B \vdash C \end{array}}{B \vdash C} \right. \text{ (cut)} \rightsquigarrow \llbracket r \rrbracket = \llbracket q \rrbracket \circ \llbracket p \rrbracket$$

Categorical semantics — interpreting proofs

$$\frac{\begin{array}{c} p \\ \vdots \\ A \vdash B \end{array}}{\rightsquigarrow \llbracket p \rrbracket : \llbracket A \rrbracket \rightarrow \llbracket B \rrbracket}$$

$$r \left\{ \frac{\begin{array}{c} p \\ \vdots \\ A \vdash B \end{array}}{A \vdash B} \quad \frac{\begin{array}{c} q \\ \vdots \\ B \vdash C \end{array}}{B \vdash C} \right. \quad \rightsquigarrow \llbracket r \rrbracket = \llbracket q \rrbracket \circ \llbracket p \rrbracket \\ \left. (cut) \right.$$

$$\llbracket A \rrbracket \xrightarrow{\llbracket p \rrbracket} \llbracket B \rrbracket \xrightarrow{\llbracket q \rrbracket} \llbracket C \rrbracket$$


Categorical semantics — categories

More generally, we want $\llbracket A \rrbracket$ to be any mathematical object for which there is a good notion of “function” or “morphism”.

Categorical semantics — categories

More generally, we want $\llbracket A \rrbracket$ to be any mathematical object for which there is a good notion of “function” or “morphism”.

Definition

A category \mathcal{C} is the data of:

- Objects (e.g. sets)
- Morphisms (e.g. functions)
- Composition of morphisms
- Such that everything is “well-behaved” (associative composition...)

Definition

A categorical model in \mathcal{C} is:

- for every formula A , and object $\llbracket A \rrbracket \in \mathcal{C}$
- for every proof $p : A \vdash B$, a morphism $\llbracket p \rrbracket : \llbracket A \rrbracket \rightarrow \llbracket B \rrbracket$
- compatible with cut
- invariant under **cut elimination**

Traditional vs linear logic

Logic	Traditional	
Formulas	statements	
Proof of $A, B \vdash C$	assuming A and B , can prove C	

Traditional vs linear logic

Logic	Traditional	Linear
Formulas	statements	
Proof of $A, B \vdash C$	assuming A and B , can prove C	

Traditional vs linear logic

Logic	Traditional	Linear
Formulas	statements	ressources
Proof of $A, B \vdash C$	assuming A and B , can prove C	

Traditional vs linear logic

Logic	Traditional	Linear
Formulas	statements	ressources
Proof of $A, B \vdash C$	assuming A and B , can prove C	consuming A and B , can produce C

Linear logic — two kinds of “and”

In a proof of $A, B \vdash C$, A and B must be used **exactly once**.

This leads to two notions of “and”:

Linear logic — two kinds of “and”

In a proof of $A, B \vdash C$, A and B must be used **exactly once**.

This leads to two notions of “and”:

“I have both A and B ”

$$A \otimes B$$

Linear logic — two kinds of “and”

In a proof of $A, B \vdash C$, A and B must be used **exactly once**.

This leads to two notions of “and”:

“I have both A and B ”

$$A \otimes B$$

$$\frac{\text{€} \vdash \text{baguette} \quad \text{€} \vdash \text{croissant}}{\text{€}, \text{€} \vdash \text{baguette} \otimes \text{croissant}}$$

Linear logic — two kinds of “and”

In a proof of $A, B \vdash C$, A and B must be used **exactly once**.

This leads to two notions of “and”:

“I have both A and B ”

$A \otimes B$

“I can chose between A and B ”

$A \& B$

$$\frac{\text{€} \vdash \text{baguette} \quad \text{€} \vdash \text{croissant}}{\text{€}, \text{€} \vdash \text{baguette} \otimes \text{croissant}}$$

Linear logic — two kinds of “and”

In a proof of $A, B \vdash C$, A and B must be used **exactly once**.

This leads to two notions of “and”:

“I have both A and B ”

$$A \otimes B$$

“I can chose between A and B ”

$$A \& B$$

$$\frac{\text{€} \vdash \text{/\text{}} \quad \text{€} \vdash \text{croissant}}{\text{€}, \text{€} \vdash \text{/\text{}} \otimes \text{croissant}}$$

$$\frac{\text{€} \vdash \text{/\text{}} \quad \text{€} \vdash \text{croissant}}{\text{€} \vdash \text{/\text{}} \& \text{croissant}}$$

Linear logic — two kinds of “and”

In a proof of $A, B \vdash C$, A and B must be used **exactly once**.

This leads to two notions of “and”:

“I have both A and B ”

$$A \otimes B$$

“I can chose between A and B ”

$$A \& B$$

$$\frac{\mathbb{1} \vdash \text{/\text{}} \quad \mathbb{1} \vdash \text{croissant}}{\mathbb{1}, \mathbb{1} \vdash \text{/\text{}} \otimes \text{croissant}}$$

$$\frac{\mathbb{1} \vdash \text{/\text{}} \quad \mathbb{1} \vdash \text{croissant}}{\mathbb{1} \vdash \text{/\text{}} \& \text{croissant}}$$

But $\mathbb{1} \not\vdash \text{/\text{}} \otimes \text{croissant}$.

Linear logic — “unlimited”

A new connective: $!A$ meaning “unlimited A ” / “as much A as one wants”.

Linear logic — “unlimited”

A new connective: $!A$ meaning “unlimited A ” / “as much A as one wants”.

Example

$$!\mathbb{W} \vdash \text{😊}$$

Linear logic — “unlimited”

A new connective: $!A$ meaning “unlimited A ” / “as much A as one wants”.

Example

$$!\mathbb{W} \vdash \text{😊}$$

Example

$$!(A \& B) \dashv\vdash !A \otimes !B$$

Linear logic — “unlimited”

A new connective: $!A$ meaning “unlimited A ” / “as much A as one wants”.

Example

$$!\mathbb{W} \vdash \mathbb{S}$$

Example

$$!(A \& B) \dashv\vdash !A \otimes !B$$

This leads to two notions of implication:

Linear implication

$$\frac{A \vdash B}{\vdash A \multimap B}$$

Traditional implication

$$\frac{!A \vdash B}{\vdash A \implies B}$$

The relational model of linear logic

Theorem

*There is a **model** of linear logic where:*

- *for every formula A , $\llbracket A \rrbracket$ is a set*
- *for every proof $p : A \vdash B$, $\llbracket p \rrbracket \subseteq \llbracket A \rrbracket \times \llbracket B \rrbracket$ is a **relation***

The relational model of linear logic

Theorem

There is a **model** of linear logic where:

- for every formula A , $\llbracket A \rrbracket$ is a set
- for every proof $p : A \vdash B$, $\llbracket p \rrbracket \subseteq \llbracket A \rrbracket \times \llbracket B \rrbracket$ is a **relation**

Moreover, formulas are interpreted as follows:

- $\llbracket A \& B \rrbracket = \llbracket A \rrbracket \sqcup \llbracket B \rrbracket$
- $\llbracket A \otimes B \rrbracket = \llbracket A \rrbracket \times \llbracket B \rrbracket$
- $\llbracket !A \rrbracket = \text{Mul}(\llbracket A \rrbracket) = \text{multisets on } \llbracket A \rrbracket = \text{lists } (a_1, \dots, a_n) \text{ in } \llbracket A \rrbracket \text{ up to reordering}$

The relational model of linear logic

Theorem

There is a **model** of linear logic where:

- for every formula A , $\llbracket A \rrbracket$ is a set
- for every proof $p : A \vdash B$, $\llbracket p \rrbracket \subseteq \llbracket A \rrbracket \times \llbracket B \rrbracket$ is a **relation**

Moreover, formulas are interpreted as follows:

- $\llbracket A \& B \rrbracket = \llbracket A \rrbracket \sqcup \llbracket B \rrbracket$
- $\llbracket A \otimes B \rrbracket = \llbracket A \rrbracket \times \llbracket B \rrbracket$
- $\llbracket !A \rrbracket = \text{Mul}(\llbracket A \rrbracket) = \text{multisets on } \llbracket A \rrbracket = \text{lists } (a_1, \dots, a_n) \text{ in } \llbracket A \rrbracket \text{ up to reordering}$

Can we be more quantitative than relations?

The relational model of linear logic

Theorem

There is a **model** of linear logic where:

- for every formula A , $\llbracket A \rrbracket$ is a set
- for every proof $p : A \vdash B$, $\llbracket p \rrbracket \subseteq \llbracket A \rrbracket \times \llbracket B \rrbracket$ is a **relation**

Moreover, formulas are interpreted as follows:

- $\llbracket A \& B \rrbracket = \llbracket A \rrbracket \sqcup \llbracket B \rrbracket$
- $\llbracket A \otimes B \rrbracket = \llbracket A \rrbracket \times \llbracket B \rrbracket$
- $\llbracket !A \rrbracket = \text{Mul}(\llbracket A \rrbracket) = \text{multisets on } \llbracket A \rrbracket = \text{lists } (a_1, \dots, a_n) \text{ in } \llbracket A \rrbracket \text{ up to reordering}$

Can we be more quantitative than relations?

Remark

Given $(a, b) \in \llbracket A \rrbracket \times \llbracket B \rrbracket$ and $R \subseteq \llbracket A \rrbracket \times \llbracket B \rrbracket$, either $(a, b) \in R$ or $(a, b) \notin R$.

Quantitative relations

Relation

$$R \subseteq X \times Y \quad r : X \times Y \rightarrow \{\text{False}, \text{True}\}$$

Quantitative relations

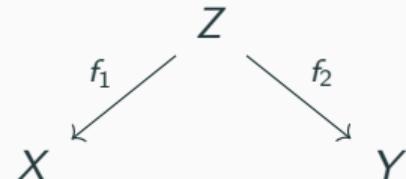
Relation	$R \subseteq X \times Y$	$r : X \times Y \rightarrow \{\text{False, True}\}$
Weighted relation		$r : X \times Y \rightarrow \mathbb{N}$

Quantitative relations

Relation	$R \subseteq X \times Y$	$r : X \times Y \rightarrow \{\text{False, True}\}$
Weighted relation		$r : X \times Y \rightarrow \mathbb{N}$
Span	$f : Z \rightarrow X \times Y$	$r : X \times Y \rightarrow \text{Set}$

Quantitative relations

Relation	$R \subseteq X \times Y$	$r : X \times Y \rightarrow \{\text{False, True}\}$
Weighted relation		$r : X \times Y \rightarrow \mathbb{N}$
Span	$f : Z \rightarrow X \times Y$	$r : X \times Y \rightarrow \text{Set}$



A model in spans?

Theorem?

There is a model of linear logic where:

- for every formula A , $\llbracket A \rrbracket$ is a set
- for every proof $p : A \vdash B$, $\llbracket p \rrbracket : Z \rightarrow \llbracket A \rrbracket \times \llbracket B \rrbracket$ is a span
- $\llbracket A \& B \rrbracket = \llbracket A \rrbracket \sqcup \llbracket B \rrbracket$
- $\llbracket A \otimes B \rrbracket = \llbracket A \rrbracket \times \llbracket B \rrbracket$
- $\llbracket !A \rrbracket = \text{Mul}(\llbracket A \rrbracket)$

A model in spans?

Theorem?

There is a model of linear logic where:

- for every formula A , $\llbracket A \rrbracket$ is a set
- for every proof $p : A \vdash B$, $\llbracket p \rrbracket : Z \rightarrow \llbracket A \rrbracket \times \llbracket B \rrbracket$ is a span
- $\llbracket A \& B \rrbracket = \llbracket A \rrbracket \sqcup \llbracket B \rrbracket$
- $\llbracket A \otimes B \rrbracket = \llbracket A \rrbracket \times \llbracket B \rrbracket$
- $\llbracket !A \rrbracket = \text{Mul}(\llbracket A \rrbracket)$

WRONG!

$X \mapsto \text{Mul}(X)$ is not **functorial** on spans: it does not preserve the composition of spans.

How to fix this?

A model in spans?

Theorem?

There is a model of linear logic where:

- for every formula A , $\llbracket A \rrbracket$ is a set
- for every proof $p : A \vdash B$, $\llbracket p \rrbracket : Z \rightarrow \llbracket A \rrbracket \times \llbracket B \rrbracket$ is a span
- $\llbracket A \& B \rrbracket = \llbracket A \rrbracket \sqcup \llbracket B \rrbracket$
- $\llbracket A \otimes B \rrbracket = \llbracket A \rrbracket \times \llbracket B \rrbracket$
- $\llbracket !A \rrbracket = \text{Mul}(\llbracket A \rrbracket)$

WRONG!

$X \mapsto \text{Mul}(X)$ is not **functorial** on spans: it does not preserve the composition of spans.

How to fix this?

Lists **up to reordering** are too crude: need to *keep track of symmetries*.

Lists up to reordering

Given $X = \{a, b\}$, lists of size 2 on X up to reordering:

$$(a, a) \quad (b, b) \quad (a, b) = (b, a)$$

Lists up to reordering

Given $X = \{a, b\}$, lists of size 2 on X up to reordering:

$$(a, a)$$

$$(b, b)$$

$$(a, b) = (b, a)$$

If instead of imposing $(a, b) = (b, a)$, we add a “path”:

$$(a, a) \xrightarrow{\sim}$$

$$(b, b) \xrightarrow{\sim}$$

$$(a, b) \xleftarrow{\sim} (b, a)$$

Lists up to reordering

Given $X = \{a, b\}$, lists of size 2 on X up to reordering:

$$(a, a) \quad (b, b) \quad (a, b) = (b, a)$$

If instead of imposing $(a, b) = (b, a)$, we add a “path”:

$$(a, a) \quad (b, b) \quad (a, b) \xleftarrow{\sim} (b, a)$$

We get a **groupoid** (category with invertible morphisms).

Lists up to reordering

Given $X = \{a, b\}$, lists of size 2 on X up to reordering:

$$(a, a) \quad (b, b) \quad (a, b) = (b, a)$$

If instead of imposing $(a, b) = (b, a)$, we add a “path”:

$$(a, a) \quad (b, b) \quad (a, b) \xleftarrow{\sim} (b, a)$$

The diagram shows two curved arrows with a tilde symbol above them, indicating a path or isomorphism between the lists (a, a) and (b, b) . The first arrow points from (a, a) to (b, b) , and the second arrow points from (b, b) back to (a, a) .

We get a **groupoid** (category with invertible morphisms).

This idea already underlies the following models:

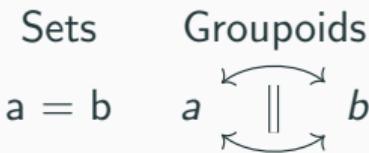
- Mellies's span-based template games model.
- Fiore, Gambino, Hyland and Winskel's generalized species model.

Enter homotopy theory

Sets

$$a = b$$

Enter homotopy theory



Enter homotopy theory

Sets

$$a = b$$

Groupoids

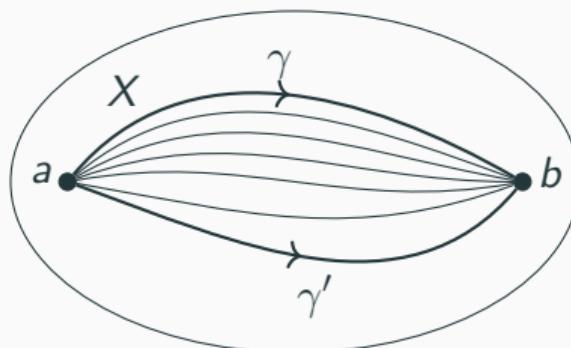
2-groupoids

Enter homotopy theory

Enter homotopy theory

Remark

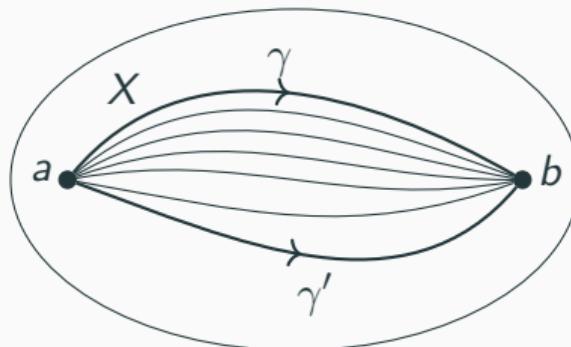
In topology: spaces have points, paths, deformations of paths...



Enter homotopy theory

Remark

In topology: spaces have points, paths, deformations of paths...



∞ -groupoids \approx spaces up to *homotopy*

Table of Contents

Mathematical logic

A homotopy-theoretical model of linear logic

∞ -categorical models

Homotopy type theory

Homotopy type theory

- an alternative foundation to set theory
- based on Martin-Löf's type theory
- a formal language to speak about ∞ -groupoids

Homotopy type theory

Homotopy type theory

- an alternative foundation to set theory
- based on Martin-Löf's type theory
- a formal language to speak about ∞ -groupoids

Set theory	set X	elements $a, b \in X$	$a = b$ is either True or False
Type theory	type X	elements $a, b : X$	$a = b$ is itself a type

- $a = b$ can have multiple elements.
- given $p, q : a = b$, can form the type $p = q$, and so on.

Homotopy type theory

Homotopy type theory

- an alternative foundation to set theory
- based on Martin-Löf's type theory
- a formal language to speak about ∞ -groupoids

Set theory	set X	elements $a, b \in X$	$a = b$ is either True or False
Type theory	type X	elements $a, b : X$	$a = b$ is itself a type

- $a = b$ can have multiple elements.
- given $p, q : a = b$, can form the type $p = q$, and so on.

\rightsquigarrow types have ∞ -groupoid structure.

Homotopy multisets

Goal: “homotopify” multisets.

$$\text{Mul}(X) = \bigsqcup_{n \in \mathbb{N}} X^n / \mathfrak{S}_n$$

Homotopy multisets

Goal: “homotopify” multisets.

$$\text{Mul}(X) = \bigsqcup_{n \in \mathbb{N}} X^n / \mathfrak{S}_n$$

Definition

In HoTT, the type of **homotopy multisets** on a type X is

$$\text{HMul}(X) = \sum_{E:\text{FinSet}} X^E$$

Elements of $\text{HMul}(X)$: pairs (E, f) where:

- E finite set
- $f : E \rightarrow X$

Homotopy multisets examples

Equalities $(E, p) = (F, q)$ are given by

$$\begin{array}{ccc} E & \xrightarrow[\sim]{f} & F \\ & \searrow p & \swarrow q \\ & X & \end{array}$$

Homotopy multisets examples

Equalities $(E, p) = (F, q)$ are given by

$$\begin{array}{ccc} E & \xrightarrow[\sim]{f} & F \\ & \searrow p & \swarrow q \\ & X & \end{array}$$

If $X = \{\bullet, \bullet\}$ and $E = \{0, 1\}$,

$$\{0, 1\}$$

$$\{0, 1\}$$

$$\{0, 1\}$$

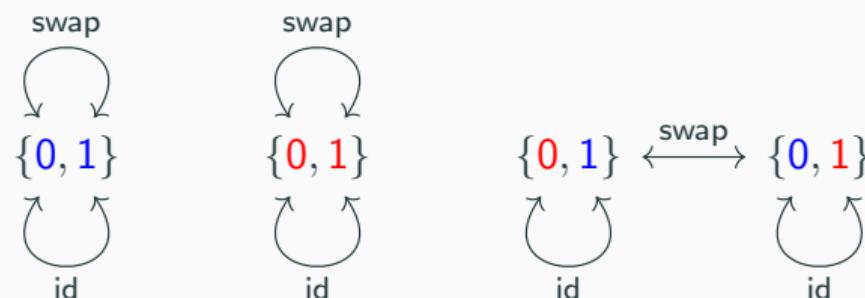
$$\{0, 1\}$$

Homotopy multisets examples

Equalities $(E, p) = (F, q)$ are given by

$$\begin{array}{ccc} E & \xrightarrow[\sim]{f} & F \\ & \searrow p & \swarrow q \\ & X & \end{array}$$

If $X = \{\bullet, \bullet\}$ and $E = \{0, 1\}$,



A span-based model of linear logic in HoTT

Theorem (H, Mimram 2024)

*In homotopy type theory, there is a **Seely category** Span with:*

- *objects are types*
- *morphisms are spans $X \leftarrow Z \rightarrow Y$*
- $\llbracket A \& B \rrbracket := \llbracket A \rrbracket \sqcup \llbracket B \rrbracket$
- $\llbracket A \otimes B \rrbracket := \llbracket A \rrbracket \times \llbracket B \rrbracket$
- $\llbracket !A \rrbracket := \text{HMul}(\llbracket A \rrbracket)$

Linear logic and Seely categories

Definition (Seely category)

1. symmetric monoidal category $(\mathcal{C}, \otimes, 1, \multimap)$
2. with finite products ($\&$ and \top),
3. a comonad $(!, \delta, \varepsilon) : \mathcal{C} \rightarrow \mathcal{C}$,
4. isomorphisms $m_{X,Y}^2 : !(X \& Y) \simeq !X \otimes !Y$ (recall $!(A \& B) \dashv\vdash !A \otimes !B$)
 $m^0 : !\top \simeq 1$

5. commutative diagram:

$$\begin{array}{ccc} !X \otimes !Y & \xrightarrow{\delta_X \otimes \delta_Y} & !!X \otimes !!Y \\ m_{X,Y}^2 \downarrow & & \downarrow m_{!X,!Y}^2 \\ !(X \& Y) & \xrightarrow{\delta_{X \& Y}} & !!!(X \& Y) \xrightarrow{!(\pi_1, \pi_2)} !!(!X \& !Y) \end{array}$$

Linear logic and Seely categories

Definition (Seely category)

1. symmetric monoidal category $(\mathcal{C}, \otimes, 1, \multimap)$
2. with finite products ($\&$ and \top),
3. a comonad $(!, \delta, \varepsilon) : \mathcal{C} \rightarrow \mathcal{C}$,
4. isomorphisms $m_{X,Y}^2 : !(X \& Y) \simeq !X \otimes !Y$ (recall $!(A \& B) \dashv\vdash !A \otimes !B$)
 $m^0 : !\top \simeq 1$

5. commutative diagram:

$$\begin{array}{ccc} !X \otimes !Y & \xrightarrow{\delta_X \otimes \delta_Y} & !!X \otimes !!Y \\ m_{X,Y}^2 \downarrow & & \downarrow m_{!X,!Y}^2 \\ !(X \& Y) & \xrightarrow{\delta_{X \& Y}} & !!!(X \& Y) \xrightarrow{!(\pi_1, \pi_2)} !!(!X \& !Y) \end{array}$$

Linear logic and Seely categories

Definition (Seely category)

1. symmetric monoidal category $(\mathcal{C}, \otimes, 1, \multimap)$
2. with finite products ($\&$ and \top),
3. a comonad $(!, \delta, \varepsilon) : \mathcal{C} \rightarrow \mathcal{C}$,
4. isomorphisms $m_{X,Y}^2 : !(X \& Y) \simeq !X \otimes !Y$ (recall $!(A \& B) \dashv\vdash !A \otimes !B$)
 $m^0 : !\top \simeq 1$

5. commutative diagram:

$$\begin{array}{ccc} !X \otimes !Y & \xrightarrow{\delta_X \otimes \delta_Y} & !!X \otimes !!Y \\ m_{X,Y}^2 \downarrow & & \downarrow m_{!X,!Y}^2 \\ !(X \& Y) & \xrightarrow{\delta_{X \& Y}} & !!!(X \& Y) \xrightarrow{!(\pi_1, \pi_2)} !!(!X \& !Y) \end{array}$$

Linear logic and Seely categories

Definition (Seely category)

1. symmetric monoidal category $(\mathcal{C}, \otimes, 1, \multimap)$
2. with finite products ($\&$ and \top),
3. a comonad $(!, \delta, \varepsilon) : \mathcal{C} \rightarrow \mathcal{C}$,
4. isomorphisms $m_{X,Y}^2 : !(X \& Y) \simeq !X \otimes !Y$ (recall $!(A \& B) \dashv\vdash !A \otimes !B$)
 $m^0 : !\top \simeq 1$

5. commutative diagram:

$$\begin{array}{ccc} !X \otimes !Y & \xrightarrow{\delta_X \otimes \delta_Y} & !!X \otimes !!Y \\ m_{X,Y}^2 \downarrow & & \downarrow m_{!X,!Y}^2 \\ !(X \& Y) & \xrightarrow{\delta_{X \& Y}} & !!!(X \& Y) \xrightarrow{!(\pi_1, \pi_2)} !!(!X \& !Y) \end{array}$$

Linear logic and Seely categories

Definition (Seely category)

1. symmetric monoidal category $(\mathcal{C}, \otimes, 1, \multimap)$
2. with finite products ($\&$ and \top),
3. a comonad $(!, \delta, \varepsilon) : \mathcal{C} \rightarrow \mathcal{C}$,
4. isomorphisms $m_{X,Y}^2 : !(X \& Y) \simeq !X \otimes !Y$ (recall $!(A \& B) \dashv\vdash !A \otimes !B$)
 $m^0 : !\top \simeq 1$

5. commutative diagram:

$$\begin{array}{ccc} !X \otimes !Y & \xrightarrow{\delta_X \otimes \delta_Y} & !!X \otimes !!Y \\ m_{X,Y}^2 \downarrow & & \downarrow m_{!X,!Y}^2 \\ !(X \& Y) & \xrightarrow{\delta_{X \& Y}} & !!!(X \& Y) \xrightarrow{!(\pi_1, \pi_2)} !(\mathbf{!}X \& \mathbf{!}Y) \end{array}$$

Linear logic and Seely categories

Definition (Seely category)

1. symmetric monoidal category $(\mathcal{C}, \otimes, 1, \multimap)$
2. with finite products ($\&$ and \top),
3. a comonad $(!, \delta, \varepsilon) : \mathcal{C} \rightarrow \mathcal{C}$,
4. isomorphisms $m_{X,Y}^2 : !(X \& Y) \simeq !X \otimes !Y$ (recall $!(A \& B) \dashv\vdash !A \otimes !B$)
 $m^0 : !\top \simeq 1$

5. commutative diagram:

$$\begin{array}{ccc} !X \otimes !Y & \xrightarrow{\delta_X \otimes \delta_Y} & !!X \otimes !!Y \\ m_{X,Y}^2 \downarrow & & \downarrow m_{!X,!Y}^2 \\ !(X \& Y) & \xrightarrow{\delta_{X \& Y}} & !!!(X \& Y) \xrightarrow{!(\pi_1, \pi_2)} !!(!X \& !Y) \end{array}$$

Linear logic and Seely categories

Definition (Seely category)

1. symmetric monoidal category $(\mathcal{C}, \otimes, 1, \multimap)$
2. with finite products ($\&$ and \top),
3. a comonad $(!, \delta, \varepsilon) : \mathcal{C} \rightarrow \mathcal{C}$,
4. isomorphisms $m_{X,Y}^2 : !(X \& Y) \simeq !X \otimes !Y$ (recall $!(A \& B) \dashv\vdash !A \otimes !B$)
 $m^0 : !\top \simeq 1$

5. commutative diagram:

$$\begin{array}{ccc} !X \otimes !Y & \xrightarrow{\delta_X \otimes \delta_Y} & !!X \otimes !!Y \\ m_{X,Y}^2 \downarrow & & \downarrow m_{!X,!Y}^2 \\ !(X \& Y) & \xrightarrow{\delta_{X \& Y}} & !!!(X \& Y) \xrightarrow{!(\pi_1, \pi_2)} !(\mathbf{!}X \& \mathbf{!}Y) \end{array}$$

Theorem (Seely)

Every Seely category is a model of linear logic.

Kleisli category of a Seely category

Proposition

From a Seely category \mathcal{C} , can build its **Kleisli category** $\mathcal{C}_!$ with:

- the same objects
- morphisms $X \rightarrow Y$ in $\mathcal{C}_!$ are morphisms $!X \rightarrow Y$ in \mathcal{C}

Kleisli category of a Seely category

Proposition

From a Seely category \mathcal{C} , can build its **Kleisli category** $\mathcal{C}_!$ with:

- the same objects
- morphisms $X \rightarrow Y$ in $\mathcal{C}_!$ are morphisms $!X \rightarrow Y$ in \mathcal{C}

Theorem

$\mathcal{C}_!$ is a model of **traditional logic**.

Linear implication

$$\frac{A \vdash B}{\vdash A \multimap B}$$

Traditional implication

$$\frac{!A \vdash B}{\vdash A \implies B}$$

Kleisli category of a Seely category

Proposition

From a Seely category \mathcal{C} , can build its **Kleisli category** $\mathcal{C}_!$ with:

- the same objects
- morphisms $X \rightarrow Y$ in $\mathcal{C}_!$ are morphisms $!X \rightarrow Y$ in \mathcal{C}

Theorem

$\mathcal{C}_!$ is a model of **traditional logic**.

Linear implication

$$\frac{A \vdash B}{\vdash A \multimap B}$$

Traditional implication

$$\frac{!A \vdash B}{\vdash A \implies B}$$

What does $\text{Span}_{\text{HMul}}$ look like?

Non-linear spans are polynomials

A polynomial (in types) is a diagram

$$\begin{array}{ccc} & E & \xrightarrow{p} B \\ s \swarrow & & \searrow t \\ I & & J \end{array}$$

Theorem (H, Mimram 2024)

Poly_{fin} is the Kleisli category for the comonad HMul on Span :

$$\text{Span}(\text{HMul}(I), J) \simeq \text{Poly}_{fin}(I, J)$$

where $\text{HMul}(X) = \sum_{E:\text{FinSet}} (E \rightarrow X)$.

Non-linear spans are polynomials

A polynomial (in types) is a diagram

$$\begin{array}{ccc} & E & \xrightarrow{p} B \\ s \swarrow & & \searrow t \\ I & & J \end{array}$$

Theorem (H, Mimram 2024)

$\text{Poly}_{\mathcal{V}}$ is the Kleisli category for the comonad $\text{HMul}_{\mathcal{V}}$ on Span :

$$\text{Span}(\text{HMul}_{\mathcal{V}}(I), J) \simeq \text{Poly}_{\mathcal{V}}(I, J)$$

where $\text{HMul}_{\mathcal{V}}(X) = \sum_{E:\mathcal{V}}(E \rightarrow X)$.

Remark: polynomial functors

Any polynomial

$$I \xleftarrow{s} E \xrightarrow{p} B \xrightarrow{t} J$$

induces a **polynomial functor**

$$\mathcal{U}^I \rightarrow \mathcal{U}^J$$

$$(X_i)_{i \in I} \mapsto \left(\sum_{B \in t^{-1}(j)} \prod_{e \in p^{-1}(b)} X_{s(e)} \right)_{j \in J}$$

Remark: polynomial functors

Any polynomial

$$I \xleftarrow{s} E \xrightarrow{p} B \xrightarrow{t} J$$

induces a **polynomial functor**

$$\mathcal{U}^I \rightarrow \mathcal{U}^J$$

$$(X_i)_{i \in I} \mapsto \left(\sum_{B \in t^{-1}(j)} \prod_{e \in p^{-1}(b)} X_{s(e)} \right)_{j \in J}$$

Remark

When the polynomial is a span (i.e. p is an isomorphism),

$$(X_i)_{i \in I} \mapsto \left(\sum_{B \in t^{-1}(j)} X_{s(p^{-1}(e))} \right)_{j \in J}$$

A parenthesis on differential linear logic

Differential linear logic extends linear logic based on the following analogy:

Differential calculus	Linear logic
“Every linear map is smooth”	$\frac{A \vdash B}{!A \vdash B} \text{ (der)}$
Every smooth $f : \mathbb{R}^m \rightarrow \mathbb{R}^n$ has a differential $df_0 : \mathbb{R}^m \rightarrow \mathbb{R}^n$	

A parenthesis on differential linear logic

Differential linear logic extends linear logic based on the following analogy:

Differential calculus	Linear logic
“Every linear map is smooth”	$\frac{A \vdash B}{!A \vdash B} \text{ (der)}$
Every smooth $f : \mathbb{R}^m \rightarrow \mathbb{R}^n$ has a differential $df_0 : \mathbb{R}^m \rightarrow \mathbb{R}^n$	$\frac{!A \vdash B}{A \vdash B} \text{ (coder)}$

A parenthesis on differential linear logic

Differential linear logic extends linear logic based on the following analogy:

Differential calculus	Linear logic
“Every linear map is smooth”	$\frac{A \vdash B}{!A \vdash B} \text{ (der)}$
Every smooth $f : \mathbb{R}^m \rightarrow \mathbb{R}^n$ has a differential $df_0 : \mathbb{R}^m \rightarrow \mathbb{R}^n$	$\frac{!A \vdash B}{A \vdash B} \text{ (coder)}$

Theorem (H, unpublished)

The Seely category $(\text{Span}, \text{HMul}_{\mathcal{V}})$ is a model of differential linear logic whenever the types in \mathcal{V} are **discrete** (e.g. $\mathcal{V} = \text{FinSet}$ works).

Table of Contents

Mathematical logic

A homotopy-theoretical model of linear logic

∞ -categorical models

Insight from homotopy theory: higher coherences

In a category \mathcal{C} , given $x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} t$,

Insight from homotopy theory: higher coherences

In a category \mathcal{C} , given $x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} t$,

Composition is **associative** $h \circ (g \circ f) = (h \circ g) \circ f$

Insight from homotopy theory: higher coherences

In a category \mathcal{C} , given $x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} t$,

Composition is **associative** $h \circ (g \circ f) = (h \circ g) \circ f$

In homotopical setting, instead $h \circ (g \circ f) \sim (h \circ g) \circ f$

Insight from homotopy theory: higher coherences

In a category \mathcal{C} , given $x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} t$,

Composition is **associative** $h \circ (g \circ f) = (h \circ g) \circ f$

In homotopical setting, instead $h \circ (g \circ f) \sim (h \circ g) \circ f$

$$i(h(gf))$$

$$((ih)g)f$$

Insight from homotopy theory: higher coherences

In a category \mathcal{C} , given $x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} t$,

Composition is **associative** $h \circ (g \circ f) = (h \circ g) \circ f$

In homotopical setting, instead $h \circ (g \circ f) \sim (h \circ g) \circ f$

$$\begin{array}{ccc} & (ih)(gf) & \\ \swarrow \sim & & \searrow \sim \\ i(h(gf)) & & ((ih)g)f \end{array}$$

Insight from homotopy theory: higher coherences

In a category \mathcal{C} , given $x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} t$,

Composition is **associative** $h \circ (g \circ f) = (h \circ g) \circ f$

In homotopical setting, instead $h \circ (g \circ f) \sim (h \circ g) \circ f$

$$\begin{array}{ccc} & (ih)(gf) & \\ \swarrow \sim & & \searrow \sim \\ i(h(gf)) & & ((ih)g)f \\ \downarrow \sim & & \uparrow \sim \\ i((hg)f) & \xrightarrow{\sim} & (i(hg))f \end{array}$$

Insight from homotopy theory: higher coherences

In a category \mathcal{C} , given $x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} t$,

Composition is **associative** $h \circ (g \circ f) = (h \circ g) \circ f$

In homotopical setting, instead $h \circ (g \circ f) \sim (h \circ g) \circ f$

$$\begin{array}{ccc} & (ih)(gf) & \\ \swarrow \sim & & \searrow \sim \\ i(h(gf)) & & ((ih)g)f \\ \downarrow \sim & & \uparrow \sim \\ i((hg)f) & \xrightarrow{\sim} & (i(hg))f \end{array}$$

Both paths should be isomorphic \rightsquigarrow also need higher coherences...

Insight from homotopy theory: higher coherences

In a category \mathcal{C} , given $x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} t$,

Composition is **associative** $h \circ (g \circ f) = (h \circ g) \circ f$

In homotopical setting, instead $h \circ (g \circ f) \sim (h \circ g) \circ f$

$$\begin{array}{ccc} & (ih)(gf) & \\ \swarrow \sim & & \searrow \sim \\ i(h(gf)) & & ((ih)g)f \\ \downarrow \sim & & \uparrow \sim \\ i((hg)f) & \xrightarrow{\sim} & (i(hg))f \end{array}$$

Both paths should be isomorphic \rightsquigarrow also need higher coherences...

In an ∞ -category, composition is **homotopy coherently** associative.

Recall: Seely categories

Definition (Seely)

A *Seely category* is a

1. symmetric monoidal category $(\mathcal{C}, \otimes, 1, -\circ)$
2. with finite products ($\&$ and \top),
3. a comonad $(!, \delta, \varepsilon) : \mathcal{C} \rightarrow \mathcal{C}$,
4. isomorphisms $m_{X,Y}^2 : !(X \& Y) \simeq !X \otimes !Y$, $m^0 : !\top \simeq 1$

5. commutative diagram:

$$\begin{array}{ccc} !X \otimes !Y & \xrightarrow{\delta_X \otimes \delta_Y} & !!X \otimes !!Y \\ m_{X,Y}^2 \downarrow & & \downarrow m_{!X,!Y}^2 \\ !(X \& Y) & \xrightarrow{\delta_{X \& Y}} & !!!(X \& Y) \xrightarrow{!(\pi_1, \pi_2)} !(!X \& !Y) \end{array}$$

Recall: Seely categories

Definition (Seely)

A *Seely category* is a

1. symmetric monoidal category $(\mathcal{C}, \otimes, 1, -\circ)$
2. with finite products ($\&$ and \top),
3. a comonad $(!, \delta, \varepsilon) : \mathcal{C} \rightarrow \mathcal{C}$,
4. isomorphisms $m_{X,Y}^2 : !(X \& Y) \simeq !X \otimes !Y$, $m^0 : !\top \simeq 1$

$$\begin{array}{ccc} !X \otimes !Y & \xrightarrow{\delta_X \otimes \delta_Y} & !!X \otimes !!Y \\ \downarrow m_{X,Y}^2 & & \downarrow m_{!X,!Y}^2 \\ !(X \& Y) & \xrightarrow{\delta_{X \& Y}} & !!!(X \& Y) \xrightarrow{!(\pi_1, \pi_2)} !(\mathbf{!}X \& \mathbf{!}Y) \end{array}$$

Point 5 is too ad hoc \rightsquigarrow **no natural ∞ -categorical generalization.**

Linear/non-linear adjunctions

Definition

A *linear/non-linear adjunction* is an adjunction

$$(\mathcal{M}, \times) \begin{array}{c} \xrightarrow{L} \\ \perp \\ \xleftarrow{M} \end{array} (\mathcal{L}, \otimes)$$

where:

Definition

A *linear/non-linear adjunction* is an adjunction

$$(\mathcal{M}, \times) \begin{array}{c} \xrightarrow{L} \\ \perp \\ \xleftarrow{M} \end{array} (\mathcal{L}, \otimes)$$

where:

- \mathcal{M} has finite products ($\&$)

Definition

A *linear/non-linear adjunction* is an adjunction

$$(\mathcal{M}, \times) \begin{array}{c} \xrightarrow{L} \\ \perp \\ \xleftarrow{M} \end{array} (\mathcal{L}, \otimes)$$

where:

- \mathcal{M} has finite products ($\&$)
- \mathcal{L} is symmetric monoidal (\otimes)

Linear/non-linear adjunctions

Definition

A *linear/non-linear adjunction* is an adjunction

$$(\mathcal{M}, \times) \begin{array}{c} \xrightarrow{L} \\ \perp \\ \xleftarrow{M} \end{array} (\mathcal{L}, \otimes)$$

where:

- \mathcal{M} has finite products ($\&$)
- \mathcal{L} is symmetric monoidal (\otimes)
- $L : \mathcal{M} \rightarrow \mathcal{L}$ is a strongly monoidal functor: $L(X \& Y) \simeq L(X) \otimes L(Y)$

Linear/non-linear adjunctions

Definition

A *linear/non-linear adjunction* is an adjunction

$$(\mathcal{M}, \times) \begin{array}{c} \xrightarrow{L} \\ \perp \\ \xleftarrow{M} \end{array} (\mathcal{L}, \otimes)$$

where:

- \mathcal{M} has finite products ($\&$)
- \mathcal{L} is symmetric monoidal (\otimes)
- $L : \mathcal{M} \rightarrow \mathcal{L}$ is a strongly monoidal functor: $L(X \& Y) \simeq L(X) \otimes L(Y)$

Theorem (Benton)

In every linear/non-linear adjunction, \mathcal{L} is a model of linear logic, with $\llbracket ! \rrbracket = L \circ M$.

Linear/non-linear adjunctions

Definition

A *linear/non-linear adjunction* is an adjunction

$$(\mathcal{M}, \times) \begin{array}{c} \xrightarrow{L} \\ \perp \\ \xleftarrow{M} \end{array} (\mathcal{L}, \otimes)$$

where:

- \mathcal{M} has **finite products** ($\&$)
- \mathcal{L} is **symmetric monoidal** (\otimes)
- $L : \mathcal{M} \rightarrow \mathcal{L}$ is a **strongly monoidal functor**: $L(X \& Y) \simeq L(X) \otimes L(Y)$

Theorem (Benton)

In every linear/non-linear adjunction, \mathcal{L} is a model of linear logic, with $[\![!]\!] = L \circ M$.

All readily make sense for ∞ -categories!

Theorem (Benton)

A categorical model of linear logic is an LNL adjunction between categories.

$$(\mathcal{M}, \times) \begin{array}{c} \xrightarrow{L} \\ \perp \\ \xleftarrow{M} \end{array} (\mathcal{L}, \otimes)$$

Definition

An ∞ -categorical model of linear logic is an LNL adjunction between ∞ -categories.

$$(\mathcal{M}, \times) \begin{array}{c} \xrightarrow{L} \\ \xleftarrow[\perp]{M} \end{array} (\mathcal{L}, \otimes)$$

Sanity check: Seely isomorphisms

We should make sure we still have the Seely isomorphisms $!(A \& B) \dashv\vdash !A \otimes !B$.

Sanity check: Seely isomorphisms

We should make sure we still have the Seely isomorphisms $!(A \& B) \dashv\vdash !A \otimes !B$.

Theorem (H, Mimram 2025)

In a linear/non-linear adjunction $(\mathcal{M}, \times) \begin{array}{c} \xrightarrow{L} \\ \perp \\ \xleftarrow{M} \end{array} (\mathcal{L}, \otimes)$, we have

$$LM(X \& Y) \simeq LM(X) \otimes LM(Y).$$

Sanity check: Seely isomorphisms

We should make sure we still have the Seely isomorphisms $!(A \& B) \dashv\vdash !A \otimes !B$.

Theorem (H, Mimram 2025)

In a linear/non-linear adjunction $(\mathcal{M}, \times) \xrightleftharpoons[\substack{\perp \\ M}]{} (\mathcal{L}, \otimes)$, we have

$$LM(X \& Y) \simeq LM(X) \otimes LM(Y).$$

Proof.

Right adjoints preserve products, so $M(X \& Y) \simeq M(X) \& M(Y)$.

Since, $L : (\mathcal{M}, \&) \rightarrow (\mathcal{L}, \otimes)$ is strongly monoidal, we have

$$LM(X \& Y) \simeq L(M(X) \& M(Y)) \simeq LM(X) \otimes LM(Y).$$

□

Sanity check: comonoid structure on $!A$

Proposition

In a model of linear logic, every $!X$ has a canonical **commutative comonoid** structure.

Proof.

Comes from $!A \vdash !A \otimes !A$, and cut-elimination invariance. □

Sanity check: comonoid structure on $!A$

Proposition

In a model of linear logic, every $!X$ has a canonical **commutative comonoid** structure.

Proof.

Comes from $!A \vdash !A \otimes !A$, and cut-elimination invariance. □

Theorem (H, Mimram 2025)

In an LNL adjunction, every $LM(X)$ has a canonical commutative comonoid structure.

Sanity check: comonoid structure on $!A$

Proposition

In a model of linear logic, every $!X$ has a canonical **commutative comonoid** structure.

Proof.

Comes from $!A \vdash !A \otimes !A$, and cut-elimination invariance. □

Theorem (H, Mimram 2025)

In an LNL adjunction, every $LM(X)$ has a canonical commutative comonoid structure.

Proof.

In an ∞ -category with finite products, every object admits a **unique** commutative comonoid structure $\Delta : X \rightarrow X \times X$.

\mathcal{M} has finite products, so every $M(X)$ is a commutative comonoid in \mathcal{M} .

$L : \mathcal{M} \rightarrow \mathcal{L}$ is strongly monoidal, so it preserves commutative comonoids. □

A special case : Lafont $(\infty\text{-})$ categories

Theorem (Lafont)

*If for every $X \in \mathcal{L}$, there exists a **universal** commutative comonoid $!_u X$ in \mathcal{L} , then*

$$[\![!A]\!] := !_u [\![A]\!]$$

defines a model of linear logic.

A special case : Lafont $(\infty\text{-})$ categories

Theorem (Lafont)

*If for every $X \in \mathcal{L}$, there exists a **universal commutative comonoid** $!_u X$ in \mathcal{L} , then*

$$[\![!A]\!] := !_u [\![A]\!]$$

defines a model of linear logic.

What about for ∞ -categories?

A special case : Lafont $(\infty\text{-})$ categories

Theorem (Lafont)

If for every $X \in \mathcal{L}$, there exists a **universal commutative comonoid** $!_u X$ in \mathcal{L} , then

$$[\![!A]\!] := !_u [\![A]\!]$$

defines a model of linear logic.

What about for ∞ -categories?

Theorem (H, Mimram 2025)

If \mathcal{L} admits universal commutative comonoids, then the forgetful functor

$\text{Comon}(\mathcal{L}) \rightarrow \mathcal{L}$ has a right adjoint, and this forms a linear/non-linear adjunction

$$(\text{Comon}(\mathcal{L}), \times) \rightleftarrows_{\perp} (\mathcal{L}, \otimes).$$

An explicit formula for universal comonoids

The following has been shown in 1-category theory by Mellies, Tabareau, Tasson.

Theorem (H, Mimram 2025)

Let (\mathcal{L}, \otimes) be a symmetric monoidal ∞ -category, and $X \in \mathcal{L}$. If for all $A \in \mathcal{L}$,

$$A \otimes \prod_{n \in \mathbb{N}} (X^{\otimes n})^{\mathfrak{S}_n} \rightarrow \prod_{n \in \mathbb{N}} (A \otimes X^{\otimes n})^{\mathfrak{S}_n}$$

is an isomorphism, then

$$\prod_{n \in \mathbb{N}} (X^{\otimes n})^{\mathfrak{S}_n}$$

is the universal commutative comonoid on X .

An explicit formula for universal comonoids

The following has been shown in 1-category theory by Mellies, Tabareau, Tasson.

Theorem (H, Mimram 2025)

Let (\mathcal{L}, \otimes) be a symmetric monoidal ∞ -category, and $X \in \mathcal{L}$. If for all $A \in \mathcal{L}$,

$$A \otimes \prod_{n \in \mathbb{N}} (X^{\otimes n})^{\mathfrak{S}_n} \rightarrow \prod_{n \in \mathbb{N}} (A \otimes X^{\otimes n})^{\mathfrak{S}_n}$$

is an isomorphism, then

$$\prod_{n \in \mathbb{N}} (X^{\otimes n})^{\mathfrak{S}_n}$$

is the universal commutative comonoid on X .

An explicit formula for universal comonoids

The following has been shown in 1-category theory by Mellies, Tabareau, Tasson.

Theorem (H, Mimram 2025)

Let (\mathcal{L}, \otimes) be a symmetric monoidal ∞ -category, and $X \in \mathcal{L}$. If for all $A \in \mathcal{L}$,

$$A \otimes \prod_{n \in \mathbb{N}} (X^{\otimes n})^{\mathfrak{S}_n} \rightarrow \prod_{n \in \mathbb{N}} (A \otimes X^{\otimes n})^{\mathfrak{S}_n}$$

is an isomorphism, then

$$\prod_{n \in \mathbb{N}} (X^{\otimes n})^{\mathfrak{S}_n}$$

is the universal commutative comonoid on X .

Proof.

It follows from more general dual results of Lurie on free algebras for ∞ -operads. \square

Another criterion for existence of universal comonoids

An ∞ -category \mathcal{C} is *presentable* if:

- it admits small colimits
- it is *generated* under *filtered colimits* by a *small set of compact* objects

Another criterion for existence of universal comonoids

An ∞ -category \mathcal{C} is *presentable* if:

- it admits small colimits
- it is *generated* under *filtered colimits* by a *small set of compact* objects

Theorem (H, Mimram 2025)

Let \mathcal{C} be a symmetric monoidal presentable ∞ -category such that $\forall X \in \mathcal{C}$, the functor

$$X \otimes - : \mathcal{C} \rightarrow \mathcal{C}$$

preserves small colimits. Then \mathcal{C} admits universal commutative comonoids.

But in general there is no nice formula in this context.

Example: ∞ -categorical generalized species

Theorem (H, Mimram 2025)

The following ∞ -category admits universal commutative comonoids:

- *the objects are ∞ -categories $\mathcal{C}, \mathcal{D}, \dots$*
- *the morphisms are ∞ -profunctors $\mathcal{C} \times \mathcal{D}^{op} \rightarrow \infty\text{Grpd}$*

And $!_u\mathcal{C}$ is given by the free symmetric monoidal ∞ -category on \mathcal{C} .

Proof.

The proof relies on the criterion for the explicit formula $\prod_{n \in \mathbb{N}} (X^{\otimes n})^{\mathfrak{S}_n}$. □

Comparison of higher relations

	Relations	Spans (HoTT)	Profunctors
$\llbracket A \rrbracket$	Sets X, Y	∞ -groupoids X, Y	∞ -categories \mathcal{C}, \mathcal{D}
$\llbracket A \multimap B \rrbracket$	$R \subseteq X \times Y$ $X \times Y \rightarrow \{\text{False, True}\}$	$Z \rightarrow X \times Y$ $X \times Y \rightarrow \infty\text{Grpd}$	two-sided discrete fibrations $\mathcal{C} \times \mathcal{D}^{\text{op}} \rightarrow \infty\text{Grpd}$
$\llbracket A \implies B \rrbracket$		Polynomials	Generalized species

Example: abelian “things” — 1

Proposition

There is a linear/non-linear adjunction of 1-categories

$$(\text{Set}, \times) \begin{array}{c} \xrightarrow{\mathbb{Z}\langle - \rangle} \\ \xleftarrow{\perp} \end{array} (\text{Ab}, \otimes)$$

Example: abelian “things” — 1

Proposition

There is a linear/non-linear adjunction of 1-categories

$$(\text{Set}, \times) \begin{array}{c} \xrightarrow{\mathbb{Z}\langle - \rangle} \\ \perp \\ \xleftarrow{\quad} \end{array} (\text{Ab}, \otimes)$$

Theorem (H, Mimram 2025)

There is a linear/non-linear adjunction of ∞ -categories

$$(\infty\text{Grpd}, \times) \begin{array}{c} \xrightarrow{\mathbb{S}\langle - \rangle} \\ \perp \\ \xleftarrow{\quad} \end{array} (\text{Sp}, \otimes)$$

Example: abelian “things” — 1

Proposition

There is a linear/non-linear adjunction of 1-categories

$$(\text{Set}, \times) \begin{array}{c} \xrightarrow{\mathbb{Z}\langle - \rangle} \\ \perp \\ \xleftarrow{\quad} \end{array} (\text{Ab}, \otimes)$$

Theorem (H, Mimram 2025)

There is a linear/non-linear adjunction of ∞ -categories

$$(\infty\text{Grpd}, \times) \begin{array}{c} \xrightarrow{\mathbb{S}\langle - \rangle} \\ \perp \\ \xleftarrow{\quad} \end{array} (\text{Sp}, \otimes)$$

Example: abelian “things” — 2

Proposition

Ab admits universal commutative comonoids.

Example: abelian “things” — 2

Proposition

Ab admits universal commutative comonoids.

Theorem (H, Mimram 2025)

Sp admits universal commutative comonoids.

Remark

More generally, this works for vector spaces, modules, module spectra...

Summary

- We generalized categorical semantics of linear logic to the homotopical/higher setting
- Gave a family of interpretations for $!$ in categories of spans in HoTT
- We constructed several ∞ -categorical models generalizing well-known 1- and 2-categorical ones (relations, species, vector spaces, abelian groups)

Future work

- Give direct definitions of linear ∞ -categories and Seely ∞ -categories, and show they induce LNL adjunctions.
- Compare the HoTT approach with the ∞ -categorical one.
- Generalize Mellies' span model (template games) to this new setting (in connection with polynomial functors).
- Generalize to $(\infty, 2)$ -categorical setting to model differential linear logic.
- Try to fit advanced homotopical constructions with linear flavour (Goodwillie calculus?) into this new setting.