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Logic is the study of formal statements, their proofs and their meaning.
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Logic is the study of formal statements, their proofs and their meaning.

Syntax Proof theory Semantics
(A and B) implies C 2 4~ (ax) BEB (ax) if Ais true and B is true,
(AAB) = C ABFAAB & then (A A B) is true
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Traditional semantics

In traditional semantics: interpret the logic using an ordered set.

Definition
A model of traditional logic is:

e an ordered set (TruthValues, <)

o for every formula A, a truth value [A] € TruthValues
e such that whenever A B, then [A] < [B]
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In traditional semantics: interpret the logic using an ordered set.

Definition
A model of traditional logic is:

e an ordered set (TruthValues, <)
o for every formula A, a truth value [A] € TruthValues
e such that whenever A B, then [A] < [B]

Example
We can take TruthValues = {False, True}, with False < True.
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Traditional semantics — interpreting formulas

Example
We can take TruthValues = {False, True}, with False < True.

[A] | [B] || [AAB] [Al | [B] | [A = B]
False | False False False | False True
False | True False False | True True
True | False False True | False False
True | True True True | True True
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Traditional semantics — interpreting proofs

Example
We can take TruthValues = {False, True}, with False < True.

Example
The cut rule

AFB B+ C
AEC

(cut)
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Traditional semantics — interpreting proofs

Example
We can take TruthValues = {False, True}, with False < True.

Example
The cut rule

AFB B+ C
AEC

(cut)

is interpreted in the model by the fact that if both
[A] < [B] and [B] < [C]

then
[A] < [€]

6/44



Categorical semantics — interpreting formulas

In categorical semantics, we replace the ordered set TruthValues by a category, for
instance sets.

Example
Now [A] is no longer True or False, but an arbitrary set.

[A] =eee
[B] =eeee
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Categorical semantics — interpreting formulas

In categorical semantics, we replace the ordered set TruthValues by a category, for

instance sets.

Example
Now [A] is no longer True or False, but an arbitrary set.
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Categorical semantics — interpreting formulas

In categorical semantics, we replace the ordered set TruthValues by a category, for

instance sets.

Example
Now [A] is no longer True or False, but an arbitrary set.

[AVB]|=[AJU[B] =eee eeee

[A]=eee [AAB] = [A] x [B] = cees bn
H:B]]:.... e 6 o o

[A = B] =[B]M = {f: [FAH — [Bl}
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Categorical semantics — interpreting formulas

In categorical semantics, we replace the ordered set TruthValues by a category, for

instance sets.

Example
Now [A] is no longer True or False, but an arbitrary set.

[AVB]|=[AJU[B] =eee eeee

e BT T« 1B ::::}A
H:B]]:.... ® © 0 o

[A = B]=[B]" ={f:[FAﬂ — [B]}
If [A] = 0, then [A A B] = 0.

7/44



Categorical semantics — interpreting proofs

p
' w [pl : [4] = [B]

A-B
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Categorical semantics — interpreting proofs

« [pl : [A] - [B]

~ [r] = [ql o [Pl

AFB B C
AEC

(cut)
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Categorical semantics — interpreting proofs

« [pl : [A] - [B]

AF:B B;C ~ [r] = [q] o [P]

AF C (cut)

8/44



Categorical semantics — categories

More generally, we want [A] to be any mathematical object for which there is a good
notion of “function” or “morphism”.
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Categorical semantics — categories

More generally, we want [A] to be any mathematical object for which there is a good

notion of “function” or “morphism”.
Definition
A category C is the data of:

e Objects (e.g. sets)

e Morphisms (e.g. functions)

e Composition of morphisms

e Such that everything is "well-behaved” (associative composition...)
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Categorical semantics — the big picture

Definition

A categorical model in C is:
o for every formula A, and object [A] € C
e for every proof p: A B, a morphism [p] : [A] — [B]
e compatible with cut

e invariant under cut elimination
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Traditional vs linear logic

Logic Traditional

Formulas statements

Proof of A, B - C assuming A and B,

can prove C
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Traditional vs linear logic

Logic Traditional Linear

Formulas statements ressources

i A B 1 A B
Proof of A, B C | 2%U™M"8 and B, | consuming A and B,

can prove C can produce C
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Linear logic — two kinds of “and”

In a proof of A, B+ C, A and B must be used exactly once.

This leads to two notions of “and”:
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In a proof of A, B+ C, A and B must be used exactly once.

This leads to two notions of “and”:
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AR B A& B
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Linear logic — two kinds of “and”

In a proof of A, B+ C, A and B must be used exactly once.

This leads to two notions of “and”:

“l have both A and B" “l can chose between A and B”
AR B A& B
-/ Or# -/ Or#
N Rl 45X o Q-r/L@
But @ /@ @
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Linear logic — “unlimited”

A new connective: !A meaning “unlimited A" /"as much A as one wants".
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Linear logic — “unlimited”

A new connective: !A meaning “unlimited A" /"as much A as one wants".

Example

@+ e

Example
(A& B)11A® !B

This leads to two notions of implication:

Linear implication Traditional implication
AFB IAEB
FA—oB FA — B
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The relational model of linear logic

Theorem
There is a model of linear logic where:

o for every formula A, [A] is a set

e for every proof p: At B, [p] C [A] x [B] is a relation
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The relational model of linear logic

Theorem
There is a model of linear logic where:

o for every formula A, [A] is a set

e for every proof p: At B, [p] C [A] x [B] is a relation

Moreover, formulas are interpreted as follows:

e [A& B] =[AJU[B]
e [A® B] = [A] x [B]
e [!A] = Mul([A]) = multisets on [A] = lists (a1,...,an) in [A] up to reordering
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The relational model of linear logic

Theorem
There is a model of linear logic where:

o for every formula A, [A] is a set

e for every proof p: At B, [p] C [A] x [B] is a relation

Moreover, formulas are interpreted as follows:

e [A& B] =[AJU[B]
e [A® B] = [A] x [B]
e [!A] = Mul([A]) = multisets on [A] = lists (a1,...,an) in [A] up to reordering

Can we be more quantitative than relations?

Remark
Given (a, b) € [A] x [B] and R C [A] x [B], either (a,b) € R or (a,b) ¢ R. 14/44



Quantitative relations

Relation RCXxY r: X x Y — {False, True}
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Quantitative relations

Relation RCXxY r: X x Y — {False, True}
Weighted relation r: XxY—=N
Span f:Z—=-XxY r:XxY — Set

Z
N
X Y

15/44



A model in spans?

Theorem?
There is a model of linear logic where:

e for every formula A, [A] is a set

for every proof p: Ak B, [p] : Z — [A] x [B] is a span
[A& B] =AU [B]

[A® B] = [A] x [B]

['A] = Mul([A])
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A model in spans?

Theorem?
There is a model of linear logic where:

e for every formula A, [A] is a set

for every proof p: Ak B, [p] : Z — [A] x [B] is a span
[A& B] =AU [B]

[A® B] = [A] x [B]

['A] = Mul([A])

WRONG!
X — Mul(X) is not functorial on spans: it does not preserve the composition of spans.

How to fix this?
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A model in spans?

Theorem?
There is a model of linear logic where:

e for every formula A, [A] is a set

for every proof p: Ak B, [p] : Z — [A] x [B] is a span
[A& B] =AU [B]

[A® B] = [A] x [B]

['A] = Mul([A])

WRONG!
X — Mul(X) is not functorial on spans: it does not preserve the composition of spans.

How to fix this?

Lists up to reordering are too crude: need to keep track of symmetries. )
16/44



Lists up to reordering

Given X = {a, b}, lists of size 2 on X up to reordering:
(a,a) (b, b) (a,b) = (b, a)
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Lists up to reordering

Given X = {a, b}, lists of size 2 on X up to reordering:
(a,a) (b, b) (a,b) = (b, a)
If instead of imposing (a, b) = (b, a), we add a “path”:
(a,a) (b, b) (a,b) <= (b,a)
We get a groupoid (category with invertible morphisms).
This idea already underlies the following models:

e Mellies's span-based template games model.
e Fiore, Gambino, Hyland and Winskel's generalized species model.
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Enter homotopy theory

Sets
a=>b
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Enter homotopy theory
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Enter homotopy theory

Sets Groupoids 2-groupoids ---  oo-groupoids
b a || b a1 b 1 b
fry = a
@ ? K_ =X ? K_ =X K’ _

Remark
In topology: spaces have points, paths, deformations of paths...
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Enter homotopy theory

Sets Groupoids 2-groupoids ---  oo-groupoids
b a | b a1 b 1 b
4= ? K_ =X ? Q ? K’ _

Remark
In topology: spaces have points, paths, deformations of paths...

oo-groupoids /= spaces up to homotopy
18/44
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Homotopy type theory

Homotopy type theory

e an alternative foundation to set theory
e based on Martin-Lof's type theory

e a formal language to speak about oco-groupoids
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Set theory ‘ set X ‘ elements a,b € X ‘ a = b is either True or False

Type theory ‘ type X ‘ elements a, b : X ‘ a = bis itself a type

e a = b can have multiple elements.

e given p,q:a= b, can form the type p = g, and so on.
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Homotopy type theory

Homotopy type theory

e an alternative foundation to set theory

based on Martin-Lof's type theory

a formal language to speak about co-groupoids

Set theory ‘ set X ‘ elements a,b € X ‘ a = b is either True or False

Type theory ‘ type X ‘ elements a, b : X ‘ a = bis itself a type

e a = b can have multiple elements.

e given p,q:a= b, can form the type p = g, and so on.
~> types have co-groupoid structure.
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Homotopy multisets

Goal: "homotopify” multisets.

Mul(X) = | | X"/&,
neN
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Homotopy multisets

Goal: "homotopify” multisets.

Mul(X) = | | X"/&,

neN
Definition
In HOoTT, the type of homotopy multisets on a type X is
HMul(X) = ) XF
E:FinSet

Elements of HMul(X): pairs (E, f) where:

o FE finite set

e f:E— X
21/44



Homotopy multisets examples

Equalities (E, p) = (F, q) are given by

E—Ff S F

NS
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Homotopy multisets examples

Equalities (E, p) = (F, q) are given by

E—Ff - F

NS

If X = {e,0} and E = {0,1},

{0,1} {0,1} {0,1} {0,1}
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Homotopy multisets examples

Equalities (E, p) = (F, q) are given by

E—Ff S F

NS

If X = {e,0} and E = {0,1},

swap

{0,1} {0,1} {0,1} «+—— {0,1}

swa p

22/44



A span-based model of linear logic in HoTT

Theorem (H, Mimram 2024)
In homotopy type theory, there is a Seely category Span with:

e objects are types

e morphisms are spans X < Z —'Y
o [A& B] :=[A]U[B]

e [A® B] :=[A] x [B]

o ['A] := HMul([A])
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Linear logic and Seely categories

Definition (Seely category)

1.
2.
8

. isomorphisms

symmetric monoidal category (C,®, 1, —)

with finite products (& and T),

a comonad (!,d,¢) : C — C,

m§<7y (X &Y)>IX®!Y (recall (A& B) - 1A® B)
mo -

T ~1
IX@!Y BBy HX®RIY
commutative diagram: miﬂyl lmfx,w
| Il I(1 |
(X&Y) 5 X &Y) s 1(X&IY)
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Linear logic and Seely categories

Definition (Seely category)

1.
2.
8

symmetric monoidal category (C, ®, 1, —o)
with finite products (& and T),

a comonad (!,6,¢) : C — C,

2, (X&Y)2IX®1Y N(A&B) 4+ 1A® B
. isomorphisms M,y ( ) ® (recall 1( ) ®15)
ml 1T ~1
IX@!Y Ox@oy XY
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(X&Y) T (X & Y)!m>.(.X&.Y)
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Linear logic and Seely categories

Definition (Seely category)
1. symmetric monoidal category (C,®, 1, —o)
2. with finite products (& and T),
3. a comonad (!,d,¢) : C = C,

2 (X &Y)~IX @Y (recall (A& B) - 1A® 1B
4. isomorphisms m())@y P ®1Y (recall (A& B) ® !B)
mo -

T ~1
IX@!Y BBy HX®RIY
5. commutative diagram: miyyl lmfmy

(X &Y) 5 MX&Y) s (X&)

W7y,
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Definition (Seely category)

1.
2.
8
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Linear logic and Seely categories

Definition (Seely category)

1.
2.
8

. isomorphisms

symmetric monoidal category (C,®, 1, —)

with finite products (& and T),

a comonad (!,d,¢) : C — C,
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Linear logic and Seely categories

Definition (Seely category)

1.
2.
8

. isomorphisms

symmetric monoidal category (C,®, 1, —)

with finite products (& and T),

a comonad (!,d,¢) : C — C,

m§<7y (X &Y)>IX®!Y (recall (A& B) - 1A® B)
mo -

T ~1
IX@!Y BBy HX®RIY
commutative diagram: miyyl lmfx,w
| Il I(1 |
(X&Y) 5 X &Y) s 1(X&IY)

Theorem (Seely)
Every Seely category is a model of linear logic. 24/44



Kleisli category of a Seely category

Proposition
From a Seely category C, can build its Kleisli category C, with:

e the same objects

e morphisms X — Y in Ci are morphisms !X — Y in C
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Kleisli category of a Seely category

Proposition
From a Seely category C, can build its Kleisli category C, with:

e the same objects

e morphisms X — Y in Ci are morphisms !X — Y in C

Theorem
C\ is a model of traditional logic.

Linear implication Traditional implication
AFB IAEB
FA—B FA = B

What does Spany, look like?
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Non-linear spans are polynomials

A polynomial (in types) is a diagram

Theorem (H, Mimram 2024)
Polyy;, is the Kleisli category for the comonad HMul on Span:

Span(HMul(/), J) ~ Poly,(1, J)

where HMul(X) = > r.rinset (E = X).
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Non-linear spans are polynomials

A polynomial (in types) is a diagram

Theorem (H, Mimram 2024)
Polyy, is the Kleisli category for the comonad HMuly on Span:

Span(HMuly, (1), J) ~ Polyy,(1, J)

where HMuly(X) = 3. (E = X).
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Remark: polynomial functors

Any polynomial
|+ E-*25 Bty

induces a polynomial functor
u —u’

::el’—>( Z H Xs(e)

jel
Bet—1(j) eep~ /
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Remark: polynomial functors

Any polynomial

|« EFE LBty
induces a polynomial functor
u —u’

::el’—>( Z H Xs(e)

jel
Bet—1(j) eep~ /

Remark
When the polynomial is a span (i.e. p is an isomorphism),

::el*—>< Z Xs —1(e>

Bet—1(j

27/44



A parenthesis on differential linear logic

Differential linear logic extends linear logic based on the following analogy:

Differential calculus Linear logic
" - . " AFB
Every linear map is smooth AF B (der)

Every smooth f : R™ — R" has
a differential dfy : R™ — R"
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A parenthesis on differential linear logic

Differential linear logic extends linear logic based on the following analogy:

Differential calculus Linear logic
T - - " AFB
Every linear map is smooth TAF B (der)
Every smoot.h f:R™ — R" has IA+- B (ol
a differential dfy : R™ — R" AFB

Theorem (H, unpublished)
The Seely category (Span, HMuly) is a model of differential linear logic whenever the

types in V are discrete (e.g. V = FinSet works).

28/44
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Insight from homotopy theory: higher coherences

In a category C, given x f y z t,
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Insight from homotopy theory: higher coherences

In a category C, given x f y g, 1 t,

Composition is associative ho(gof)=(hog)of
In homotopical setting, instead ho(gof)~(hog)of

/(ih)(gf )\
i(h(gf)) ((ih)g)f
Nﬂ ﬂN
i((hg)f) = (i(hg))f

Both paths should be isomorphic ~~ also need higher coherences...
In an oco-category, composition is homotopy coherently associative.

30/44



Recall: Seely categories

Definition (Seely)
A Seely category is a

1. symmetric monoidal category (C,®, 1, —o)
2. with finite products (& and T),

3.
4

a comonad (!,d,e) : C — C,

. isomorphisms mX y (X &Y)~IX®lY, ml 1T ~1
IX®!Y R XY
commutative diagram: mi’yl lmfx‘!y
(X & Y) 5 X & Y), ;0 1(X&IY)
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Recall: Seely categories

Definition (Seely)
A Seely category is a

1. symmetric monoidal category (C,®, 1, —o)
2. with finite products (& and T),

3.
4

a comonad (!,d,e) : C — C,

. isomorphisms mX y (X &Y)~IX®lY, ml 1T ~1
IX®!Y R XY
commutative diagram: mi’yl lmfx‘!y
(X & Y) 5 X & Y), ;0 1(X&IY)

Point 5 is too ad hoc ~~ no natural co-categorical generalization.
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Linear/non-linear adjunctions

Definition
A linear/non-linear adjunction is an adjunction

(M, x) 1 (£,®)

where:
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Linear/non-linear adjunctions

Definition
A linear/non-linear adjunction is an adjunction

(M, x) 1 (£,®)

where:

e M has finite products (&)
e L is symmetric monoidal (®)

e L: M — L is a strongly monoidal functor: L(X & Y) ~ L(X) ® L(Y)

Theorem (Benton)
In every linear/non-linear adjunction, L is a model of linear logic, with [!] = Lo M.

All readily make sense for co-categories! 32/44



oo-linear /non-linear adjunction

Theorem (Benton)
A categorical model of linear logic is an LNL adjunction between  categories.

L

(M, x) % (£, ®)
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oo-linear /non-linear adjunction

Definition
An oo-categorical model of linear logic is an LNL adjunction between co-categories.

L

(M, x) % (£, ®)
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Sanity check: Seely isomorphisms

We should make sure we still have the Seely isomorphisms (A& B) 4 1A® |B.
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Sanity check: Seely isomorphisms

We should make sure we still have the Seely isomorphisms (A& B) 4 1A® |B.

Theorem (H, Mimram 2025)

L
In a linear/non-linear adjunction (M, x) , L " (L,®), we have

M

LM(X & Y) ~ LM(X) @ LM(Y).

Proof.
Right adjoints preserve products, so M(X & Y) ~ M(X) & M(Y).
Since, L: (M, &) — (£, ®) is strongly monoidal, we have

LM(X & Y) ~ L(M(X) & M(Y)) ~ LM(X) ® LM(Y). 0
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: comonoid structure on !

Proposition
In a model of linear logic, every !X has a canonical commutative comonoid structure.

Proof.
Comes from 1A+ TA® A, and cut-elimination invariance. O]
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Sanity check: comonoid structure on !A

Proposition
In a model of linear logic, every !X has a canonical commutative comonoid structure.

Proof.
Comes from 1A+ TA® A, and cut-elimination invariance. O]

Theorem (H, Mimram 2025)
In an LNL adjunction, every LM(X) has a canonical commutative comonoid structure.

E\rggfc;o—category with finite products, every object admits a unique commutative
comonoid structure A : X — X x X.

M has finite products, so every M(X) is a commutative comonoid in M.

L: M — L is strongly monoidal, so it preserves commutative comonoids.
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A special case : Lafont (co-)categories

Theorem (Lafont) . .
If for every X € L, there exists a universal commutative comonoid !, X in L, then

['A] =L [A]

defines a model of linear logic.

36/44



A special case : Lafont (co-)categories

Theorem (Lafont) . .
If for every X € L, there exists a universal commutative comonoid !, X in L, then

I'A] :=!,[A]
defines a model of linear logic.

What about for co-categories?

36/44



A special case : Lafont (co-)categories

Theorem (Lafont)
If for every X € L, there exists a universal commutative comonoid !, X in L, then

I'A] :=!,[A]
defines a model of linear logic.

What about for co-categories?

Theorem (H, Mimram 2025)
If L admits universal commutative comonoids, then the forgetful functor

Comon(L) — L has a right adjoint, and this forms a linear/non-linear adjunction

(Comon(£), x) = ' (£, ®).
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An explicit formula for universal comonoids

The following has been shown in 1-category theory by Mellies, Tabareau, Tasson.

Theorem (H, Mimram 2025)
Let (£,®) be a symmetric monoidal co-category, and X € L.

then

H (X®n)6n

neN

is the universal commutative comonoid on X.
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An explicit formula for universal comonoids

The following has been shown in 1-category theory by Mellies, Tabareau, Tasson.

Theorem (H, Mimram 2025)
Let (£,®) be a symmetric monoidal co-category, and X € L. If for all A€ L,

Ao [[(x®MS = JJ(Ae x®m)S
neN neN

is an isomorphism, then

H (X®n)6n

neN

is the universal commutative comonoid on X.

Proof.
It follows from more general dual results of Lurie on free algebras for co-operads. O

37/44



Another criterion for existence of universal comonoids

An oo-category C is presentable if:

e it admits small colimits

e it is generated under filtered colimits by a small set of compact objects
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Another criterion for existence of universal comonoids

An oo-category C is presentable if:

e it admits small colimits

e it is generated under filtered colimits by a small set of compact objects

Theorem (H, Mimram 2025)
Let C be a symmetric monoidal presentable co-category such that VX € C, the functor

X®—-—:C—=C
preserves small colimits. Then C admits universal commutative comonoids.

But in general there is no nice formula in this context.
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Example: oo-categorical generalized species

Theorem (H, Mimram 2025)
The following co-category admits universal commutative comonoids:

e the objects are co-categories C, D, . ..

e the morphisms are oo-profunctors C x D°P — ocoGrpd

And !,C is given by the free symmetric monoidal occ-category on C.

Proof.
The proof relies on the criterion for the explicit formula [T, cn(X®")®". O
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Comparison of higher relations

Relations Spans (HoTT) Profunctors
[A] Sets X, Y oo-groupoids X, Y oo-categories C, D
[A —o B] RCXxY Z—>XxY two-sided discrete fibrations
X xY — {False, True} | X x Y — 0oGrpd | C x D°P — 0coGrpd
[A = B] Polynomials Generalized species
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Example: abelian “things” — 1

Proposition
There is a linear/non-linear adjunction of 1-categories

Z{-)

(Set,x) - 1 ' (Ab,®)
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Example: abelian “things” — 2

Proposition
Ab admits universal commutative comonoids.
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Example: abelian “things” — 2

Proposition
Ab admits universal commutative comonoids.

Theorem (H, Mimram 2025)
Sp admits universal commutative comonoids.

Remark
More generally, this works for vector spaces, modules, module spectra...
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e We generalized categorical semantics of linear logic to the homotopical /higher
setting

e Gave a family of interprations for ! in categories of spans in HoT T

e We constructed several co-categorical models generalizing well-known 1- and
2-categorical ones (relations, species, vector spaces, abelian groups)
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e Give direct definitions of linear oo-categories and Seely co-categories, and show
they induce LNL adjunctions.

e Compare the HoTT approach with the co-categorical one.

o Generalize Mellies’ span model (template games) to this new setting (in
connection with polynomial functors).

e Generalize to (00, 2)-categorical setting to model differential linear logic.

e Try to fit advanced homotopical constructions with linear flavour (Goodwillie
calculus?) into this new setting.
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