
Higher-categorical models of linear logic

PhD defense

Elies Harington

January 26, 2026

École Polytechnique

1/44

Table of Contents

Mathematical logic

A homotopy-theoretical model of linear logic

∞-categorical models

2/44

Logic

Logic is the study of formal statements, their proofs and their meaning.

Syntax Proof theory Semantics

(A and B) implies C

(A ∧ B) =⇒ C

(ax)
A ⊢ A

(ax)
B ⊢ B (∧-R)

A,B ⊢ A ∧ B

if A is true and B is true,

then (A ∧ B) is true

3/44

Logic

Logic is the study of formal statements, their proofs and their meaning.

Syntax

Proof theory Semantics

(A and B) implies C

(A ∧ B) =⇒ C

(ax)
A ⊢ A

(ax)
B ⊢ B (∧-R)

A,B ⊢ A ∧ B

if A is true and B is true,

then (A ∧ B) is true

3/44

Logic

Logic is the study of formal statements, their proofs and their meaning.

Syntax Proof theory

Semantics

(A and B) implies C

(A ∧ B) =⇒ C

(ax)
A ⊢ A

(ax)
B ⊢ B (∧-R)

A,B ⊢ A ∧ B

if A is true and B is true,

then (A ∧ B) is true

3/44

Logic

Logic is the study of formal statements, their proofs and their meaning.

Syntax Proof theory Semantics

(A and B) implies C

(A ∧ B) =⇒ C

(ax)
A ⊢ A

(ax)
B ⊢ B (∧-R)

A,B ⊢ A ∧ B

if A is true and B is true,

then (A ∧ B) is true

3/44

Traditional semantics

In traditional semantics: interpret the logic using an ordered set.

Definition
A model of traditional logic is:

• an ordered set (TruthValues,≤)
• for every formula A, a truth value JAK ∈ TruthValues

• such that whenever A ⊢ B, then JAK ≤ JBK

Example
We can take TruthValues = {False,True}, with False < True.

4/44

Traditional semantics

In traditional semantics: interpret the logic using an ordered set.

Definition
A model of traditional logic is:

• an ordered set (TruthValues,≤)
• for every formula A, a truth value JAK ∈ TruthValues

• such that whenever A ⊢ B, then JAK ≤ JBK

Example
We can take TruthValues = {False,True}, with False < True.

4/44

Traditional semantics — interpreting formulas

Example
We can take TruthValues = {False,True}, with False < True.

JAK JBK JA ∧ BK
False False False

False True False

True False False

True True True

JAK JBK JA =⇒ BK
False False True

False True True

True False False

True True True

5/44

Traditional semantics — interpreting proofs

Example
We can take TruthValues = {False,True}, with False < True.

Example
The cut rule

A ⊢ B B ⊢ C (cut)
A ⊢ C

is interpreted in the model by the fact that if both

JAK ≤ JBK and JBK ≤ JCK

then

JAK ≤ JCK

6/44

Traditional semantics — interpreting proofs

Example
We can take TruthValues = {False,True}, with False < True.

Example
The cut rule

A ⊢ B B ⊢ C (cut)
A ⊢ C

is interpreted in the model by the fact that if both

JAK ≤ JBK and JBK ≤ JCK

then

JAK ≤ JCK

6/44

Categorical semantics — interpreting formulas

In categorical semantics, we replace the ordered set TruthValues by a category, for

instance sets.

Example
Now JAK is no longer True or False, but an arbitrary set.

JAK = • • •
JBK = • • • •

JA ∨ BK = JAK ⊔ JBK = • • • • • • •

JA ∧ BK = JAK× JBK =
• • • •
• • • •
• • • •︸ ︷︷ ︸

B

A

JA =⇒ BK = JBKJAK = {f : JAK→ JBK}

If JAK = ∅, then JA ∧ BK = ∅.

7/44

Categorical semantics — interpreting formulas

In categorical semantics, we replace the ordered set TruthValues by a category, for

instance sets.

Example
Now JAK is no longer True or False, but an arbitrary set.

JAK = • • •
JBK = • • • •

JA ∨ BK = JAK ⊔ JBK = • • • • • • •

JA ∧ BK = JAK× JBK =
• • • •
• • • •
• • • •︸ ︷︷ ︸

B

A

JA =⇒ BK = JBKJAK = {f : JAK→ JBK}

If JAK = ∅, then JA ∧ BK = ∅.

7/44

Categorical semantics — interpreting formulas

In categorical semantics, we replace the ordered set TruthValues by a category, for

instance sets.

Example
Now JAK is no longer True or False, but an arbitrary set.

JAK = • • •
JBK = • • • •

JA ∨ BK = JAK ⊔ JBK = • • • • • • •

JA ∧ BK = JAK× JBK =
• • • •
• • • •
• • • •︸ ︷︷ ︸

B

A

JA =⇒ BK = JBKJAK = {f : JAK→ JBK}

If JAK = ∅, then JA ∧ BK = ∅.

7/44

Categorical semantics — interpreting formulas

In categorical semantics, we replace the ordered set TruthValues by a category, for

instance sets.

Example
Now JAK is no longer True or False, but an arbitrary set.

JAK = • • •
JBK = • • • •

JA ∨ BK = JAK ⊔ JBK = • • • • • • •

JA ∧ BK = JAK× JBK =
• • • •
• • • •
• • • •︸ ︷︷ ︸

B

A

JA =⇒ BK = JBKJAK = {f : JAK→ JBK}

If JAK = ∅, then JA ∧ BK = ∅.

7/44

Categorical semantics — interpreting formulas

In categorical semantics, we replace the ordered set TruthValues by a category, for

instance sets.

Example
Now JAK is no longer True or False, but an arbitrary set.

JAK = • • •
JBK = • • • •

JA ∨ BK = JAK ⊔ JBK = • • • • • • •

JA ∧ BK = JAK× JBK =
• • • •
• • • •
• • • •︸ ︷︷ ︸

B

A

JA =⇒ BK = JBKJAK = {f : JAK→ JBK}

If JAK = ∅, then JA ∧ BK = ∅.

7/44

Categorical semantics — interpreting proofs

p
...

A ⊢ B

⇝ JpK : JAK→ JBK

r


p
...

A ⊢ B

q
...

B ⊢ C (cut)
A ⊢ C

⇝ JrK = JqK ◦ JpK

JAK JBK JCK
JpK

JrK

JqK

8/44

Categorical semantics — interpreting proofs

p
...

A ⊢ B

⇝ JpK : JAK→ JBK

r


p
...

A ⊢ B

q
...

B ⊢ C (cut)
A ⊢ C

⇝ JrK = JqK ◦ JpK

JAK JBK JCK
JpK

JrK

JqK

8/44

Categorical semantics — interpreting proofs

p
...

A ⊢ B

⇝ JpK : JAK→ JBK

r


p
...

A ⊢ B

q
...

B ⊢ C (cut)
A ⊢ C

⇝ JrK = JqK ◦ JpK

JAK JBK JCK
JpK

JrK

JqK

8/44

Categorical semantics — categories

More generally, we want JAK to be any mathematical object for which there is a good

notion of “function” or “morphism”.

Definition
A category C is the data of:

• Objects (e.g. sets)

• Morphisms (e.g. functions)

• Composition of morphisms

• Such that everything is “well-behaved” (associative composition...)

9/44

Categorical semantics — categories

More generally, we want JAK to be any mathematical object for which there is a good

notion of “function” or “morphism”.

Definition
A category C is the data of:

• Objects (e.g. sets)

• Morphisms (e.g. functions)

• Composition of morphisms

• Such that everything is “well-behaved” (associative composition...)

9/44

Categorical semantics — the big picture

Definition
A categorical model in C is:

• for every formula A, and object JAK ∈ C
• for every proof p : A ⊢ B, a morphism JpK : JAK→ JBK

• compatible with cut

• invariant under cut elimination

10/44

Traditional vs linear logic

Logic Traditional

Linear

Formulas statements

ressources

Proof of A,B ⊢ C
assuming A and B,

can prove C

consuming A and B,

can produce C

11/44

Traditional vs linear logic

Logic Traditional Linear

Formulas statements

ressources

Proof of A,B ⊢ C
assuming A and B,

can prove C

consuming A and B,

can produce C

11/44

Traditional vs linear logic

Logic Traditional Linear

Formulas statements ressources

Proof of A,B ⊢ C
assuming A and B,

can prove C

consuming A and B,

can produce C

11/44

Traditional vs linear logic

Logic Traditional Linear

Formulas statements ressources

Proof of A,B ⊢ C
assuming A and B,

can prove C

consuming A and B,

can produce C

11/44

Linear logic — two kinds of “and”

In a proof of A,B ⊢ C , A and B must be used exactly once.

This leads to two notions of “and”:

“I have both A and B” “I can chose between A and B”

A⊗ B A& B

⊢ ⊢
, ⊢ ⊗

⊢ ⊢
⊢ &

But ̸⊢ ⊗ .

12/44

Linear logic — two kinds of “and”

In a proof of A,B ⊢ C , A and B must be used exactly once.

This leads to two notions of “and”:

“I have both A and B”

“I can chose between A and B”

A⊗ B

A& B

⊢ ⊢
, ⊢ ⊗

⊢ ⊢
⊢ &

But ̸⊢ ⊗ .

12/44

Linear logic — two kinds of “and”

In a proof of A,B ⊢ C , A and B must be used exactly once.

This leads to two notions of “and”:

“I have both A and B”

“I can chose between A and B”

A⊗ B

A& B

⊢ ⊢
, ⊢ ⊗

⊢ ⊢
⊢ &

But ̸⊢ ⊗ .

12/44

Linear logic — two kinds of “and”

In a proof of A,B ⊢ C , A and B must be used exactly once.

This leads to two notions of “and”:

“I have both A and B” “I can chose between A and B”

A⊗ B A& B

⊢ ⊢
, ⊢ ⊗

⊢ ⊢
⊢ &

But ̸⊢ ⊗ .

12/44

Linear logic — two kinds of “and”

In a proof of A,B ⊢ C , A and B must be used exactly once.

This leads to two notions of “and”:

“I have both A and B” “I can chose between A and B”

A⊗ B A& B

⊢ ⊢
, ⊢ ⊗

⊢ ⊢
⊢ &

But ̸⊢ ⊗ .

12/44

Linear logic — two kinds of “and”

In a proof of A,B ⊢ C , A and B must be used exactly once.

This leads to two notions of “and”:

“I have both A and B” “I can chose between A and B”

A⊗ B A& B

⊢ ⊢
, ⊢ ⊗

⊢ ⊢
⊢ &

But ̸⊢ ⊗ .

12/44

Linear logic — “unlimited”

A new connective: !A meaning “unlimited A”/“as much A as one wants”.

Example

! ⊢

Example

!(A& B) ⊣⊢ !A⊗ !B

This leads to two notions of implication:

Linear implication Traditional implication
A ⊢ B
⊢ A⊸ B

!A ⊢ B
⊢ A =⇒ B

13/44

Linear logic — “unlimited”

A new connective: !A meaning “unlimited A”/“as much A as one wants”.

Example

! ⊢

Example

!(A& B) ⊣⊢ !A⊗ !B

This leads to two notions of implication:

Linear implication Traditional implication
A ⊢ B
⊢ A⊸ B

!A ⊢ B
⊢ A =⇒ B

13/44

Linear logic — “unlimited”

A new connective: !A meaning “unlimited A”/“as much A as one wants”.

Example

! ⊢

Example

!(A& B) ⊣⊢ !A⊗ !B

This leads to two notions of implication:

Linear implication Traditional implication
A ⊢ B
⊢ A⊸ B

!A ⊢ B
⊢ A =⇒ B

13/44

Linear logic — “unlimited”

A new connective: !A meaning “unlimited A”/“as much A as one wants”.

Example

! ⊢

Example

!(A& B) ⊣⊢ !A⊗ !B

This leads to two notions of implication:

Linear implication Traditional implication
A ⊢ B
⊢ A⊸ B

!A ⊢ B
⊢ A =⇒ B

13/44

The relational model of linear logic

Theorem
There is a model of linear logic where:

• for every formula A, JAK is a set

• for every proof p : A ⊢ B, JpK ⊆ JAK× JBK is a relation

Moreover, formulas are interpreted as follows:

• JA& BK = JAK ⊔ JBK
• JA⊗ BK = JAK× JBK
• J!AK = Mul(JAK) = multisets on JAK = lists (a1, . . . , an) in JAK up to reordering

Can we be more quantitative than relations?

Remark
Given (a, b) ∈ JAK× JBK and R ⊆ JAK× JBK, either (a, b) ∈ R or (a, b) /∈ R.

14/44

The relational model of linear logic

Theorem
There is a model of linear logic where:

• for every formula A, JAK is a set

• for every proof p : A ⊢ B, JpK ⊆ JAK× JBK is a relation

Moreover, formulas are interpreted as follows:

• JA& BK = JAK ⊔ JBK
• JA⊗ BK = JAK× JBK
• J!AK = Mul(JAK) = multisets on JAK = lists (a1, . . . , an) in JAK up to reordering

Can we be more quantitative than relations?

Remark
Given (a, b) ∈ JAK× JBK and R ⊆ JAK× JBK, either (a, b) ∈ R or (a, b) /∈ R.

14/44

The relational model of linear logic

Theorem
There is a model of linear logic where:

• for every formula A, JAK is a set

• for every proof p : A ⊢ B, JpK ⊆ JAK× JBK is a relation

Moreover, formulas are interpreted as follows:

• JA& BK = JAK ⊔ JBK
• JA⊗ BK = JAK× JBK
• J!AK = Mul(JAK) = multisets on JAK = lists (a1, . . . , an) in JAK up to reordering

Can we be more quantitative than relations?

Remark
Given (a, b) ∈ JAK× JBK and R ⊆ JAK× JBK, either (a, b) ∈ R or (a, b) /∈ R.

14/44

The relational model of linear logic

Theorem
There is a model of linear logic where:

• for every formula A, JAK is a set

• for every proof p : A ⊢ B, JpK ⊆ JAK× JBK is a relation

Moreover, formulas are interpreted as follows:

• JA& BK = JAK ⊔ JBK
• JA⊗ BK = JAK× JBK
• J!AK = Mul(JAK) = multisets on JAK = lists (a1, . . . , an) in JAK up to reordering

Can we be more quantitative than relations?

Remark
Given (a, b) ∈ JAK× JBK and R ⊆ JAK× JBK, either (a, b) ∈ R or (a, b) /∈ R. 14/44

Quantitative relations

Relation R ⊆ X × Y r : X × Y → {False,True}

Weighted relation r : X × Y → N
Span f : Z → X × Y r : X × Y → Set

Z

X Y

f1 f2

15/44

Quantitative relations

Relation R ⊆ X × Y r : X × Y → {False,True}
Weighted relation r : X × Y → N

Span f : Z → X × Y r : X × Y → Set

Z

X Y

f1 f2

15/44

Quantitative relations

Relation R ⊆ X × Y r : X × Y → {False,True}
Weighted relation r : X × Y → N
Span f : Z → X × Y r : X × Y → Set

Z

X Y

f1 f2

15/44

Quantitative relations

Relation R ⊆ X × Y r : X × Y → {False,True}
Weighted relation r : X × Y → N
Span f : Z → X × Y r : X × Y → Set

Z

X Y

f1 f2

15/44

A model in spans?

Theorem?
There is a model of linear logic where:

• for every formula A, JAK is a set

• for every proof p : A ⊢ B, JpK : Z → JAK× JBK is a span

• JA& BK = JAK ⊔ JBK

• JA⊗ BK = JAK× JBK

• J!AK = Mul(JAK)

WRONG!

X 7→ Mul(X) is not functorial on spans: it does not preserve the composition of spans.

How to fix this?

Lists up to reordering are too crude: need to keep track of symmetries.

16/44

A model in spans?

Theorem?
There is a model of linear logic where:

• for every formula A, JAK is a set

• for every proof p : A ⊢ B, JpK : Z → JAK× JBK is a span

• JA& BK = JAK ⊔ JBK

• JA⊗ BK = JAK× JBK

• J!AK = Mul(JAK)

WRONG!

X 7→ Mul(X) is not functorial on spans: it does not preserve the composition of spans.

How to fix this?

Lists up to reordering are too crude: need to keep track of symmetries.

16/44

A model in spans?

Theorem?
There is a model of linear logic where:

• for every formula A, JAK is a set

• for every proof p : A ⊢ B, JpK : Z → JAK× JBK is a span

• JA& BK = JAK ⊔ JBK

• JA⊗ BK = JAK× JBK

• J!AK = Mul(JAK)

WRONG!

X 7→ Mul(X) is not functorial on spans: it does not preserve the composition of spans.

How to fix this?

Lists up to reordering are too crude: need to keep track of symmetries.
16/44

Lists up to reordering

Given X = {a, b}, lists of size 2 on X up to reordering:

(a, a) (b, b) (a, b) = (b, a)

If instead of imposing (a, b) = (b, a), we add a “path”:

(a, a) (b, b) (a, b) (b, a)

∼ ∼

∼

We get a groupoid (category with invertible morphisms).

This idea already underlies the following models:

• Mellies’s span-based template games model.

• Fiore, Gambino, Hyland and Winskel’s generalized species model.

17/44

Lists up to reordering

Given X = {a, b}, lists of size 2 on X up to reordering:

(a, a) (b, b) (a, b) = (b, a)

If instead of imposing (a, b) = (b, a), we add a “path”:

(a, a) (b, b) (a, b) (b, a)

∼ ∼

∼

We get a groupoid (category with invertible morphisms).

This idea already underlies the following models:

• Mellies’s span-based template games model.

• Fiore, Gambino, Hyland and Winskel’s generalized species model.

17/44

Lists up to reordering

Given X = {a, b}, lists of size 2 on X up to reordering:

(a, a) (b, b) (a, b) = (b, a)

If instead of imposing (a, b) = (b, a), we add a “path”:

(a, a) (b, b) (a, b) (b, a)

∼ ∼

∼

We get a groupoid (category with invertible morphisms).

This idea already underlies the following models:

• Mellies’s span-based template games model.

• Fiore, Gambino, Hyland and Winskel’s generalized species model.

17/44

Lists up to reordering

Given X = {a, b}, lists of size 2 on X up to reordering:

(a, a) (b, b) (a, b) = (b, a)

If instead of imposing (a, b) = (b, a), we add a “path”:

(a, a) (b, b) (a, b) (b, a)

∼ ∼

∼

We get a groupoid (category with invertible morphisms).

This idea already underlies the following models:

• Mellies’s span-based template games model.

• Fiore, Gambino, Hyland and Winskel’s generalized species model.

17/44

Enter homotopy theory

Sets

Groupoids 2-groupoids · · · ∞-groupoids

a = b

a b a b · · · a b

Remark
In topology: spaces have points, paths, deformations of paths...

a b

γ

γ′

X

∞-groupoids ≈ spaces up to homotopy

18/44

Enter homotopy theory

Sets Groupoids

2-groupoids · · · ∞-groupoids

a = b a b

a b · · · a b

Remark
In topology: spaces have points, paths, deformations of paths...

a b

γ

γ′

X

∞-groupoids ≈ spaces up to homotopy

18/44

Enter homotopy theory

Sets Groupoids 2-groupoids

· · · ∞-groupoids

a = b a b a b

· · · a b

Remark
In topology: spaces have points, paths, deformations of paths...

a b

γ

γ′

X

∞-groupoids ≈ spaces up to homotopy

18/44

Enter homotopy theory

Sets Groupoids 2-groupoids · · · ∞-groupoids

a = b a b a b · · · a b

Remark
In topology: spaces have points, paths, deformations of paths...

a b

γ

γ′

X

∞-groupoids ≈ spaces up to homotopy

18/44

Enter homotopy theory

Sets Groupoids 2-groupoids · · · ∞-groupoids

a = b a b a b · · · a b

Remark
In topology: spaces have points, paths, deformations of paths...

a b

γ

γ′

X

∞-groupoids ≈ spaces up to homotopy

18/44

Enter homotopy theory

Sets Groupoids 2-groupoids · · · ∞-groupoids

a = b a b a b · · · a b

Remark
In topology: spaces have points, paths, deformations of paths...

a b

γ

γ′

X

∞-groupoids ≈ spaces up to homotopy
18/44

Table of Contents

Mathematical logic

A homotopy-theoretical model of linear logic

∞-categorical models

19/44

Homotopy type theory

Homotopy type theory

• an alternative foundation to set theory

• based on Martin-Löf’s type theory

• a formal language to speak about ∞-groupoids

Set theory set X elements a, b ∈ X a = b is either True or False

Type theory type X elements a, b : X a = b is itself a type

• a = b can have multiple elements.

• given p, q : a = b, can form the type p = q, and so on.

⇝ types have ∞-groupoid structure.

20/44

Homotopy type theory

Homotopy type theory

• an alternative foundation to set theory

• based on Martin-Löf’s type theory

• a formal language to speak about ∞-groupoids

Set theory set X elements a, b ∈ X a = b is either True or False

Type theory type X elements a, b : X a = b is itself a type

• a = b can have multiple elements.

• given p, q : a = b, can form the type p = q, and so on.

⇝ types have ∞-groupoid structure.

20/44

Homotopy type theory

Homotopy type theory

• an alternative foundation to set theory

• based on Martin-Löf’s type theory

• a formal language to speak about ∞-groupoids

Set theory set X elements a, b ∈ X a = b is either True or False

Type theory type X elements a, b : X a = b is itself a type

• a = b can have multiple elements.

• given p, q : a = b, can form the type p = q, and so on.

⇝ types have ∞-groupoid structure.

20/44

Homotopy multisets

Goal: “homotopify” multisets.

Mul(X) =
⊔
n∈N

X n/Sn

Definition
In HoTT, the type of homotopy multisets on a type X is

HMul(X) =
∑

E :FinSet

XE

Elements of HMul(X): pairs (E , f) where:

• E finite set

• f : E → X

21/44

Homotopy multisets

Goal: “homotopify” multisets.

Mul(X) =
⊔
n∈N

X n/Sn

Definition
In HoTT, the type of homotopy multisets on a type X is

HMul(X) =
∑

E :FinSet

XE

Elements of HMul(X): pairs (E , f) where:

• E finite set

• f : E → X
21/44

Homotopy multisets examples

Equalities (E , p) = (F , q) are given by

E F

X

f
∼

p q

If X = {•, •} and E = {0, 1},

{0, 1} {0, 1} {0, 1} {0, 1}

id

swap

id

swap

id

swap

id

22/44

Homotopy multisets examples

Equalities (E , p) = (F , q) are given by

E F

X

f
∼

p q

If X = {•, •} and E = {0, 1},

{0, 1} {0, 1} {0, 1} {0, 1}

id

swap

id

swap

id

swap

id

22/44

Homotopy multisets examples

Equalities (E , p) = (F , q) are given by

E F

X

f
∼

p q

If X = {•, •} and E = {0, 1},

{0, 1} {0, 1} {0, 1} {0, 1}

id

swap

id

swap

id

swap

id

22/44

A span-based model of linear logic in HoTT

Theorem (H, Mimram 2024)
In homotopy type theory, there is a Seely category Span with:

• objects are types

• morphisms are spans X ← Z → Y

• JA& BK := JAK ⊔ JBK

• JA⊗ BK := JAK× JBK

• J!AK := HMul(JAK)

23/44

Linear logic and Seely categories

Definition (Seely category)

1. symmetric monoidal category (C,⊗, 1,⊸)

2. with finite products (& and ⊤),
3. a comonad (!, δ, ε) : C → C,

4. isomorphisms
m2

X ,Y : !(X & Y) ≃ !X ⊗ !Y (recall !(A& B) ⊣⊢ !A⊗ !B)

m0 : !⊤ ≃ 1

5. commutative diagram:

!X⊗!Y !!X⊗!!Y

!(X & Y) !!(X & Y) !(!X&!Y)

δX⊗δY

m2
X ,Y m2

!X ,!Y

δX&Y !⟨!π1,!π2⟩

Theorem (Seely)
Every Seely category is a model of linear logic.

24/44

Linear logic and Seely categories

Definition (Seely category)

1. symmetric monoidal category (C,⊗, 1,⊸)

2. with finite products (& and ⊤),
3. a comonad (!, δ, ε) : C → C,

4. isomorphisms
m2

X ,Y : !(X & Y) ≃ !X ⊗ !Y (recall !(A& B) ⊣⊢ !A⊗ !B)

m0 : !⊤ ≃ 1

5. commutative diagram:

!X⊗!Y !!X⊗!!Y

!(X & Y) !!(X & Y) !(!X&!Y)

δX⊗δY

m2
X ,Y m2

!X ,!Y

δX&Y !⟨!π1,!π2⟩

Theorem (Seely)
Every Seely category is a model of linear logic.

24/44

Linear logic and Seely categories

Definition (Seely category)

1. symmetric monoidal category (C,⊗, 1,⊸)

2. with finite products (& and ⊤),
3. a comonad (!, δ, ε) : C → C,

4. isomorphisms
m2

X ,Y : !(X & Y) ≃ !X ⊗ !Y (recall !(A& B) ⊣⊢ !A⊗ !B)

m0 : !⊤ ≃ 1

5. commutative diagram:

!X⊗!Y !!X⊗!!Y

!(X & Y) !!(X & Y) !(!X&!Y)

δX⊗δY

m2
X ,Y m2

!X ,!Y

δX&Y !⟨!π1,!π2⟩

Theorem (Seely)
Every Seely category is a model of linear logic.

24/44

Linear logic and Seely categories

Definition (Seely category)

1. symmetric monoidal category (C,⊗, 1,⊸)

2. with finite products (& and ⊤),
3. a comonad (!, δ, ε) : C → C,

4. isomorphisms
m2

X ,Y : !(X & Y) ≃ !X ⊗ !Y (recall !(A& B) ⊣⊢ !A⊗ !B)

m0 : !⊤ ≃ 1

5. commutative diagram:

!X⊗!Y !!X⊗!!Y

!(X & Y) !!(X & Y) !(!X&!Y)

δX⊗δY

m2
X ,Y m2

!X ,!Y

δX&Y !⟨!π1,!π2⟩

Theorem (Seely)
Every Seely category is a model of linear logic.

24/44

Linear logic and Seely categories

Definition (Seely category)

1. symmetric monoidal category (C,⊗, 1,⊸)

2. with finite products (& and ⊤),
3. a comonad (!, δ, ε) : C → C,

4. isomorphisms
m2

X ,Y : !(X & Y) ≃ !X ⊗ !Y (recall !(A& B) ⊣⊢ !A⊗ !B)

m0 : !⊤ ≃ 1

5. commutative diagram:

!X⊗!Y !!X⊗!!Y

!(X & Y) !!(X & Y) !(!X&!Y)

δX⊗δY

m2
X ,Y m2

!X ,!Y

δX&Y !⟨!π1,!π2⟩

Theorem (Seely)
Every Seely category is a model of linear logic.

24/44

Linear logic and Seely categories

Definition (Seely category)

1. symmetric monoidal category (C,⊗, 1,⊸)

2. with finite products (& and ⊤),
3. a comonad (!, δ, ε) : C → C,

4. isomorphisms
m2

X ,Y : !(X & Y) ≃ !X ⊗ !Y (recall !(A& B) ⊣⊢ !A⊗ !B)

m0 : !⊤ ≃ 1

5. commutative diagram:

!X⊗!Y !!X⊗!!Y

!(X & Y) !!(X & Y) !(!X&!Y)

δX⊗δY

m2
X ,Y m2

!X ,!Y

δX&Y !⟨!π1,!π2⟩

Theorem (Seely)
Every Seely category is a model of linear logic.

24/44

Linear logic and Seely categories

Definition (Seely category)

1. symmetric monoidal category (C,⊗, 1,⊸)

2. with finite products (& and ⊤),
3. a comonad (!, δ, ε) : C → C,

4. isomorphisms
m2

X ,Y : !(X & Y) ≃ !X ⊗ !Y (recall !(A& B) ⊣⊢ !A⊗ !B)

m0 : !⊤ ≃ 1

5. commutative diagram:

!X⊗!Y !!X⊗!!Y

!(X & Y) !!(X & Y) !(!X&!Y)

δX⊗δY

m2
X ,Y m2

!X ,!Y

δX&Y !⟨!π1,!π2⟩

Theorem (Seely)
Every Seely category is a model of linear logic. 24/44

Kleisli category of a Seely category

Proposition
From a Seely category C, can build its Kleisli category C! with:

• the same objects

• morphisms X → Y in C! are morphisms !X → Y in C

Theorem
C! is a model of traditional logic.

Linear implication Traditional implication
A ⊢ B
⊢ A⊸ B

!A ⊢ B
⊢ A =⇒ B

What does SpanHMul look like?

25/44

Kleisli category of a Seely category

Proposition
From a Seely category C, can build its Kleisli category C! with:

• the same objects

• morphisms X → Y in C! are morphisms !X → Y in C

Theorem
C! is a model of traditional logic.

Linear implication Traditional implication
A ⊢ B
⊢ A⊸ B

!A ⊢ B
⊢ A =⇒ B

What does SpanHMul look like?

25/44

Kleisli category of a Seely category

Proposition
From a Seely category C, can build its Kleisli category C! with:

• the same objects

• morphisms X → Y in C! are morphisms !X → Y in C

Theorem
C! is a model of traditional logic.

Linear implication Traditional implication
A ⊢ B
⊢ A⊸ B

!A ⊢ B
⊢ A =⇒ B

What does SpanHMul look like?

25/44

Non-linear spans are polynomials

A polynomial (in types) is a diagram

E B

I J

p

s t

Theorem (H, Mimram 2024)
Polyfin is the Kleisli category for the comonad HMul on Span:

Span(HMul(I), J) ≃ Polyfin(I , J)

where HMul(X) =
∑

E :FinSet(E → X).

26/44

Non-linear spans are polynomials

A polynomial (in types) is a diagram

E B

I J

p

s t

Theorem (H, Mimram 2024)
PolyV is the Kleisli category for the comonad HMulV on Span:

Span(HMulV(I), J) ≃ PolyV(I , J)

where HMulV(X) =
∑

E :V(E → X).

26/44

Remark: polynomial functors

Any polynomial

I E B Js p t

induces a polynomial functor

U I → UJ

(Xi)i∈I 7→
(∑

B∈t−1(j)

∏
e∈p−1(b)

Xs(e)

)
j∈J

Remark
When the polynomial is a span (i.e. p is an isomorphism),

(Xi)i∈I 7→
(∑

B∈t−1(j)

Xs(p−1(e))

)
j∈J

27/44

Remark: polynomial functors

Any polynomial

I E B Js p t

induces a polynomial functor

U I → UJ

(Xi)i∈I 7→
(∑

B∈t−1(j)

∏
e∈p−1(b)

Xs(e)

)
j∈J

Remark
When the polynomial is a span (i.e. p is an isomorphism),

(Xi)i∈I 7→
(∑

B∈t−1(j)

Xs(p−1(e))

)
j∈J

27/44

A parenthesis on differential linear logic

Differential linear logic extends linear logic based on the following analogy:

Differential calculus Linear logic

“Every linear map is smooth” A ⊢ B (der)
!A ⊢ B

Every smooth f : Rm → Rn has

a differential df0 : Rm → Rn

!A ⊢ B (coder)
A ⊢ B

Theorem (H, unpublished)
The Seely category (Span,HMulV) is a model of differential linear logic whenever the

types in V are discrete (e.g. V = FinSet works).

28/44

A parenthesis on differential linear logic

Differential linear logic extends linear logic based on the following analogy:

Differential calculus Linear logic

“Every linear map is smooth” A ⊢ B (der)
!A ⊢ B

Every smooth f : Rm → Rn has

a differential df0 : Rm → Rn
!A ⊢ B (coder)
A ⊢ B

Theorem (H, unpublished)
The Seely category (Span,HMulV) is a model of differential linear logic whenever the

types in V are discrete (e.g. V = FinSet works).

28/44

A parenthesis on differential linear logic

Differential linear logic extends linear logic based on the following analogy:

Differential calculus Linear logic

“Every linear map is smooth” A ⊢ B (der)
!A ⊢ B

Every smooth f : Rm → Rn has

a differential df0 : Rm → Rn
!A ⊢ B (coder)
A ⊢ B

Theorem (H, unpublished)
The Seely category (Span,HMulV) is a model of differential linear logic whenever the

types in V are discrete (e.g. V = FinSet works).

28/44

Table of Contents

Mathematical logic

A homotopy-theoretical model of linear logic

∞-categorical models

29/44

Insight from homotopy theory: higher coherences

In a category C, given x y z t,f g h

Composition is associative h ◦ (g ◦ f) = (h ◦ g) ◦ f
In homotopical setting, instead h ◦ (g ◦ f) ∼ (h ◦ g) ◦ f

(ih)(gf)

i(h(gf)) ((ih)g)f

i((hg)f) (i(hg))f

∼∼

∼

∼

∼

Both paths should be isomorphic ⇝ also need higher coherences...

In an ∞-category, composition is homotopy coherently associative.

30/44

Insight from homotopy theory: higher coherences

In a category C, given x y z t,f g h

Composition is associative h ◦ (g ◦ f) = (h ◦ g) ◦ f

In homotopical setting, instead h ◦ (g ◦ f) ∼ (h ◦ g) ◦ f

(ih)(gf)

i(h(gf)) ((ih)g)f

i((hg)f) (i(hg))f

∼∼

∼

∼

∼

Both paths should be isomorphic ⇝ also need higher coherences...

In an ∞-category, composition is homotopy coherently associative.

30/44

Insight from homotopy theory: higher coherences

In a category C, given x y z t,f g h

Composition is associative h ◦ (g ◦ f) = (h ◦ g) ◦ f
In homotopical setting, instead h ◦ (g ◦ f) ∼ (h ◦ g) ◦ f

(ih)(gf)

i(h(gf)) ((ih)g)f

i((hg)f) (i(hg))f

∼∼

∼

∼

∼

Both paths should be isomorphic ⇝ also need higher coherences...

In an ∞-category, composition is homotopy coherently associative.

30/44

Insight from homotopy theory: higher coherences

In a category C, given x y z t,f g h

Composition is associative h ◦ (g ◦ f) = (h ◦ g) ◦ f
In homotopical setting, instead h ◦ (g ◦ f) ∼ (h ◦ g) ◦ f

(ih)(gf)

i(h(gf)) ((ih)g)f

i((hg)f) (i(hg))f

∼∼

∼

∼

∼

Both paths should be isomorphic ⇝ also need higher coherences...

In an ∞-category, composition is homotopy coherently associative.

30/44

Insight from homotopy theory: higher coherences

In a category C, given x y z t,f g h

Composition is associative h ◦ (g ◦ f) = (h ◦ g) ◦ f
In homotopical setting, instead h ◦ (g ◦ f) ∼ (h ◦ g) ◦ f

(ih)(gf)

i(h(gf)) ((ih)g)f

i((hg)f) (i(hg))f

∼∼

∼

∼

∼

Both paths should be isomorphic ⇝ also need higher coherences...

In an ∞-category, composition is homotopy coherently associative.

30/44

Insight from homotopy theory: higher coherences

In a category C, given x y z t,f g h

Composition is associative h ◦ (g ◦ f) = (h ◦ g) ◦ f
In homotopical setting, instead h ◦ (g ◦ f) ∼ (h ◦ g) ◦ f

(ih)(gf)

i(h(gf)) ((ih)g)f

i((hg)f) (i(hg))f

∼∼

∼

∼

∼

Both paths should be isomorphic ⇝ also need higher coherences...

In an ∞-category, composition is homotopy coherently associative.

30/44

Insight from homotopy theory: higher coherences

In a category C, given x y z t,f g h

Composition is associative h ◦ (g ◦ f) = (h ◦ g) ◦ f
In homotopical setting, instead h ◦ (g ◦ f) ∼ (h ◦ g) ◦ f

(ih)(gf)

i(h(gf)) ((ih)g)f

i((hg)f) (i(hg))f

∼∼

∼

∼

∼

Both paths should be isomorphic ⇝ also need higher coherences...

In an ∞-category, composition is homotopy coherently associative.

30/44

Insight from homotopy theory: higher coherences

In a category C, given x y z t,f g h

Composition is associative h ◦ (g ◦ f) = (h ◦ g) ◦ f
In homotopical setting, instead h ◦ (g ◦ f) ∼ (h ◦ g) ◦ f

(ih)(gf)

i(h(gf)) ((ih)g)f

i((hg)f) (i(hg))f

∼∼

∼

∼

∼

Both paths should be isomorphic ⇝ also need higher coherences...

In an ∞-category, composition is homotopy coherently associative.

30/44

Recall: Seely categories

Definition (Seely)
A Seely category is a

1. symmetric monoidal category (C,⊗, 1,⊸)

2. with finite products (& and ⊤),
3. a comonad (!, δ, ε) : C → C,
4. isomorphisms m2

X ,Y : !(X & Y) ≃ !X ⊗ !Y , m0 : !⊤ ≃ 1

5. commutative diagram:

!X⊗!Y !!X⊗!!Y

!(X & Y) !!(X & Y) !(!X&!Y)

δX⊗δY

m2
X ,Y m2

!X ,!Y

δX&Y !⟨!π1,!π2⟩

Point 5 is too ad hoc ⇝ no natural ∞-categorical generalization.

31/44

Recall: Seely categories

Definition (Seely)
A Seely category is a

1. symmetric monoidal category (C,⊗, 1,⊸)

2. with finite products (& and ⊤),
3. a comonad (!, δ, ε) : C → C,
4. isomorphisms m2

X ,Y : !(X & Y) ≃ !X ⊗ !Y , m0 : !⊤ ≃ 1

5. commutative diagram:

!X⊗!Y !!X⊗!!Y

!(X & Y) !!(X & Y) !(!X&!Y)

δX⊗δY

m2
X ,Y m2

!X ,!Y

δX&Y !⟨!π1,!π2⟩

Point 5 is too ad hoc ⇝ no natural ∞-categorical generalization.
31/44

Linear/non-linear adjunctions

Definition
A linear/non-linear adjunction is an adjunction

(M,×) (L,⊗)
L

M

⊣

where:

• M has finite products (&)

• L is symmetric monoidal (⊗)
• L :M→ L is a strongly monoidal functor: L(X & Y) ≃ L(X)⊗ L(Y)

Theorem (Benton)
In every linear/non-linear adjunction, L is a model of linear logic, with J!K = L ◦M.

All readily make sense for ∞-categories!

32/44

Linear/non-linear adjunctions

Definition
A linear/non-linear adjunction is an adjunction

(M,×) (L,⊗)
L

M

⊣

where:

• M has finite products (&)

• L is symmetric monoidal (⊗)
• L :M→ L is a strongly monoidal functor: L(X & Y) ≃ L(X)⊗ L(Y)

Theorem (Benton)
In every linear/non-linear adjunction, L is a model of linear logic, with J!K = L ◦M.

All readily make sense for ∞-categories!

32/44

Linear/non-linear adjunctions

Definition
A linear/non-linear adjunction is an adjunction

(M,×) (L,⊗)
L

M

⊣

where:

• M has finite products (&)

• L is symmetric monoidal (⊗)

• L :M→ L is a strongly monoidal functor: L(X & Y) ≃ L(X)⊗ L(Y)

Theorem (Benton)
In every linear/non-linear adjunction, L is a model of linear logic, with J!K = L ◦M.

All readily make sense for ∞-categories!

32/44

Linear/non-linear adjunctions

Definition
A linear/non-linear adjunction is an adjunction

(M,×) (L,⊗)
L

M

⊣

where:

• M has finite products (&)

• L is symmetric monoidal (⊗)
• L :M→ L is a strongly monoidal functor: L(X & Y) ≃ L(X)⊗ L(Y)

Theorem (Benton)
In every linear/non-linear adjunction, L is a model of linear logic, with J!K = L ◦M.

All readily make sense for ∞-categories!

32/44

Linear/non-linear adjunctions

Definition
A linear/non-linear adjunction is an adjunction

(M,×) (L,⊗)
L

M

⊣

where:

• M has finite products (&)

• L is symmetric monoidal (⊗)
• L :M→ L is a strongly monoidal functor: L(X & Y) ≃ L(X)⊗ L(Y)

Theorem (Benton)
In every linear/non-linear adjunction, L is a model of linear logic, with J!K = L ◦M.

All readily make sense for ∞-categories!

32/44

Linear/non-linear adjunctions

Definition
A linear/non-linear adjunction is an adjunction

(M,×) (L,⊗)
L

M

⊣

where:

• M has finite products (&)

• L is symmetric monoidal (⊗)
• L :M→ L is a strongly monoidal functor: L(X & Y) ≃ L(X)⊗ L(Y)

Theorem (Benton)
In every linear/non-linear adjunction, L is a model of linear logic, with J!K = L ◦M.

All readily make sense for ∞-categories! 32/44

∞-linear/non-linear adjunction

Theorem (Benton)
A

n ∞-

categorical model of linear logic is an LNL adjunction between

∞-

categories.

(M,×) (L,⊗)
L

M

⊣

33/44

∞-linear/non-linear adjunction

Definition
An ∞-categorical model of linear logic is an LNL adjunction between ∞-categories.

(M,×) (L,⊗)
L

M

⊣

33/44

Sanity check: Seely isomorphisms

We should make sure we still have the Seely isomorphisms !(A& B) ⊣⊢ !A⊗ !B.

Theorem (H, Mimram 2025)

In a linear/non-linear adjunction (M,×) (L,⊗),
L

M

⊣ we have

LM(X & Y) ≃ LM(X)⊗ LM(Y).

Proof.
Right adjoints preserve products, so M(X & Y) ≃ M(X) &M(Y).

Since, L : (M,&)→ (L,⊗) is strongly monoidal, we have

LM(X & Y) ≃ L(M(X) &M(Y)) ≃ LM(X)⊗ LM(Y).

34/44

Sanity check: Seely isomorphisms

We should make sure we still have the Seely isomorphisms !(A& B) ⊣⊢ !A⊗ !B.

Theorem (H, Mimram 2025)

In a linear/non-linear adjunction (M,×) (L,⊗),
L

M

⊣ we have

LM(X & Y) ≃ LM(X)⊗ LM(Y).

Proof.
Right adjoints preserve products, so M(X & Y) ≃ M(X) &M(Y).

Since, L : (M,&)→ (L,⊗) is strongly monoidal, we have

LM(X & Y) ≃ L(M(X) &M(Y)) ≃ LM(X)⊗ LM(Y).

34/44

Sanity check: Seely isomorphisms

We should make sure we still have the Seely isomorphisms !(A& B) ⊣⊢ !A⊗ !B.

Theorem (H, Mimram 2025)

In a linear/non-linear adjunction (M,×) (L,⊗),
L

M

⊣ we have

LM(X & Y) ≃ LM(X)⊗ LM(Y).

Proof.
Right adjoints preserve products, so M(X & Y) ≃ M(X) &M(Y).

Since, L : (M,&)→ (L,⊗) is strongly monoidal, we have

LM(X & Y) ≃ L(M(X) &M(Y)) ≃ LM(X)⊗ LM(Y).

34/44

Sanity check: comonoid structure on !A

Proposition
In a model of linear logic, every !X has a canonical commutative comonoid structure.

Proof.
Comes from !A ⊢ !A⊗ !A, and cut-elimination invariance.

Theorem (H, Mimram 2025)
In an LNL adjunction, every LM(X) has a canonical commutative comonoid structure.

Proof.
In an ∞-category with finite products, every object admits a unique commutative

comonoid structure ∆ : X → X × X .

M has finite products, so every M(X) is a commutative comonoid inM.

L :M→ L is strongly monoidal, so it preserves commutative comonoids.

35/44

Sanity check: comonoid structure on !A

Proposition
In a model of linear logic, every !X has a canonical commutative comonoid structure.

Proof.
Comes from !A ⊢ !A⊗ !A, and cut-elimination invariance.

Theorem (H, Mimram 2025)
In an LNL adjunction, every LM(X) has a canonical commutative comonoid structure.

Proof.
In an ∞-category with finite products, every object admits a unique commutative

comonoid structure ∆ : X → X × X .

M has finite products, so every M(X) is a commutative comonoid inM.

L :M→ L is strongly monoidal, so it preserves commutative comonoids.

35/44

Sanity check: comonoid structure on !A

Proposition
In a model of linear logic, every !X has a canonical commutative comonoid structure.

Proof.
Comes from !A ⊢ !A⊗ !A, and cut-elimination invariance.

Theorem (H, Mimram 2025)
In an LNL adjunction, every LM(X) has a canonical commutative comonoid structure.

Proof.
In an ∞-category with finite products, every object admits a unique commutative

comonoid structure ∆ : X → X × X .

M has finite products, so every M(X) is a commutative comonoid inM.

L :M→ L is strongly monoidal, so it preserves commutative comonoids.

35/44

A special case : Lafont (∞-)categories

Theorem (Lafont)
If for every X ∈ L, there exists a universal commutative comonoid !uX in L, then

J!AK :=!uJAK

defines a model of linear logic.

What about for ∞-categories?

Theorem (H, Mimram 2025)
If L admits universal commutative comonoids, then the forgetful functor

Comon(L)→ L has a right adjoint, and this forms a linear/non-linear adjunction

(Comon(L),×) (L,⊗).⊣

36/44

A special case : Lafont (∞-)categories

Theorem (Lafont)
If for every X ∈ L, there exists a universal commutative comonoid !uX in L, then

J!AK :=!uJAK

defines a model of linear logic.

What about for ∞-categories?

Theorem (H, Mimram 2025)
If L admits universal commutative comonoids, then the forgetful functor

Comon(L)→ L has a right adjoint, and this forms a linear/non-linear adjunction

(Comon(L),×) (L,⊗).⊣

36/44

A special case : Lafont (∞-)categories

Theorem (Lafont)
If for every X ∈ L, there exists a universal commutative comonoid !uX in L, then

J!AK :=!uJAK

defines a model of linear logic.

What about for ∞-categories?

Theorem (H, Mimram 2025)
If L admits universal commutative comonoids, then the forgetful functor

Comon(L)→ L has a right adjoint, and this forms a linear/non-linear adjunction

(Comon(L),×) (L,⊗).⊣

36/44

An explicit formula for universal comonoids

The following has been shown in 1-category theory by Mellies, Tabareau, Tasson.

Theorem (H, Mimram 2025)
Let (L,⊗) be a symmetric monoidal ∞-category, and X ∈ L. If for all A ∈ L,

A⊗
∏
n∈N

(X⊗n)Sn →
∏
n∈N

(A⊗ X⊗n)Sn

is an isomorphism, then ∏
n∈N

(X⊗n)Sn

is the universal commutative comonoid on X .

Proof.
It follows from more general dual results of Lurie on free algebras for ∞-operads.

37/44

An explicit formula for universal comonoids

The following has been shown in 1-category theory by Mellies, Tabareau, Tasson.

Theorem (H, Mimram 2025)
Let (L,⊗) be a symmetric monoidal ∞-category, and X ∈ L. If for all A ∈ L,

A⊗
∏
n∈N

(X⊗n)Sn →
∏
n∈N

(A⊗ X⊗n)Sn

is an isomorphism, then ∏
n∈N

(X⊗n)Sn

is the universal commutative comonoid on X .

Proof.
It follows from more general dual results of Lurie on free algebras for ∞-operads.

37/44

An explicit formula for universal comonoids

The following has been shown in 1-category theory by Mellies, Tabareau, Tasson.

Theorem (H, Mimram 2025)
Let (L,⊗) be a symmetric monoidal ∞-category, and X ∈ L. If for all A ∈ L,

A⊗
∏
n∈N

(X⊗n)Sn →
∏
n∈N

(A⊗ X⊗n)Sn

is an isomorphism, then ∏
n∈N

(X⊗n)Sn

is the universal commutative comonoid on X .

Proof.
It follows from more general dual results of Lurie on free algebras for ∞-operads.

37/44

Another criterion for existence of universal comonoids

An ∞-category C is presentable if:

• it admits small colimits

• it is generated under filtered colimits by a small set of compact objects

Theorem (H, Mimram 2025)
Let C be a symmetric monoidal presentable ∞-category such that ∀X ∈ C, the functor

X ⊗− : C → C

preserves small colimits. Then C admits universal commutative comonoids.

But in general there is no nice formula in this context.

38/44

Another criterion for existence of universal comonoids

An ∞-category C is presentable if:

• it admits small colimits

• it is generated under filtered colimits by a small set of compact objects

Theorem (H, Mimram 2025)
Let C be a symmetric monoidal presentable ∞-category such that ∀X ∈ C, the functor

X ⊗− : C → C

preserves small colimits. Then C admits universal commutative comonoids.

But in general there is no nice formula in this context.

38/44

Example: ∞-categorical generalized species

Theorem (H, Mimram 2025)
The following ∞-category admits universal commutative comonoids:

• the objects are ∞-categories C,D, . . .
• the morphisms are ∞-profunctors C × Dop →∞Grpd

And !uC is given by the free symmetric monoidal ∞-category on C.

Proof.
The proof relies on the criterion for the explicit formula

∏
n∈N(X

⊗n)Sn .

39/44

Comparison of higher relations

Relations Spans (HoTT) Profunctors

JAK Sets X ,Y ∞-groupoids X ,Y ∞-categories C,D

JA⊸ BK
R ⊆ X × Y

X × Y → {False,True}
Z → X × Y

X × Y →∞Grpd

two-sided discrete fibrations

C × Dop →∞Grpd

JA =⇒ BK Polynomials Generalized species

40/44

Example: abelian “things” — 1

Proposition
There is a linear/non-linear adjunction of 1-categories

(Set,×) (Ab,⊗)
Z⟨−⟩

⊣

Theorem (H, Mimram 2025)
There is a linear/non-linear adjunction of ∞-categories

(∞Grpd,×) (Sp,⊗)
S⟨−⟩

⊣

41/44

Example: abelian “things” — 1

Proposition
There is a linear/non-linear adjunction of 1-categories

(Set,×) (Ab,⊗)
Z⟨−⟩

⊣

Theorem (H, Mimram 2025)
There is a linear/non-linear adjunction of ∞-categories

(∞Grpd,×) (Sp,⊗)
S⟨−⟩

⊣

41/44

Example: abelian “things” — 1

Proposition
There is a linear/non-linear adjunction of 1-categories

(Set,×) (Ab,⊗)
Z⟨−⟩

⊣

Theorem (H, Mimram 2025)
There is a linear/non-linear adjunction of ∞-categories

(∞Grpd,×) (Sp,⊗)
S⟨−⟩

⊣

41/44

Example: abelian “things” — 2

Proposition
Ab admits universal commutative comonoids.

Theorem (H, Mimram 2025)
Sp admits universal commutative comonoids.

Remark
More generally, this works for vector spaces, modules, module spectra...

42/44

Example: abelian “things” — 2

Proposition
Ab admits universal commutative comonoids.

Theorem (H, Mimram 2025)
Sp admits universal commutative comonoids.

Remark
More generally, this works for vector spaces, modules, module spectra...

42/44

Summary

• We generalized categorical semantics of linear logic to the homotopical/higher

setting

• Gave a family of interprations for ! in categories of spans in HoTT

• We constructed several ∞-categorical models generalizing well-known 1- and

2-categorical ones (relations, species, vector spaces, abelian groups)

43/44

Future work

• Give direct definitions of linear ∞-categories and Seely ∞-categories, and show

they induce LNL adjunctions.

• Compare the HoTT approach with the ∞-categorical one.

• Generalize Mellies’ span model (template games) to this new setting (in

connection with polynomial functors).

• Generalize to (∞, 2)-categorical setting to model differential linear logic.

• Try to fit advanced homotopical constructions with linear flavour (Goodwillie

calculus?) into this new setting.

44/44

	Mathematical logic
	A homotopy-theoretical model of linear logic
	-categorical models

